INDEX(各項目ごとの目次)

[HOME]  [Processing関係]  [Arduino関係]  [マテリアル関係]  [秋葉原工作マップ]

2008年用ですが、部分的に内容を更新しています(2010/06/14)。
また、[建築農業工作ゼミ2009-2010]とも連動していますので、そちらにも幾つかサンプルがあります。
:

ラベル マトリクスLED の投稿を表示しています。 すべての投稿を表示
ラベル マトリクスLED の投稿を表示しています。 すべての投稿を表示

8/11/2008

Arduino+Processing マトリクスLED+Webカメラ

今回は、Webカメラから取り込んだ映像をArduinoに接続した8×8マトリクスLEDに映す実験を行います。まず、ProcessingでWebカメラからの映像を8×8ピクセルで取り込み、合計64個のピクセルの明るさの値(0〜255)を調べてから、その個々の値をシリアル通信でArduinoに送ります。Arduino側では、受け取った64個分の値をマトリクスLEDの個々の明るさに反映させます。Arduino基盤とマトリクスLEDとは、ICを使わず直結することにします(接続方法は「Arduino マトリクスLED1」を参照)。
Processingの画面では、マトリクスLEDの表示シミュレーション(モニタリング)を同時に行うことにします(前回行ったモザイク処理のような方法で赤い円を64個映し出すことにします)。


「Processingの画面(モニタリング)」

Processingのプログラム:

//ビデオライブラリを取り込む
import processing.video.*;
//キャプチャ用オブジェクトを用意
Capture video;

//シリアル通信ライブラリを取り込む
import processing.serial.*;
//シリアル通信オブジェクトを用意
Serial port;

//64個分のピクセル色の配列を用意
int[] pixelValue=new int[64];

//シリアル通信開始用フラグ
boolean start=false;

void setup(){
//画面を160角に設定
size(160,160);
//描画を滑らかにする
smooth();

//映像キャプチャの設定(幅8,高さ8ピクセル,フレームレート30)
video = new Capture(this, 8, 8, 30);

//ポートの設定
port=new Serial(this,"/dev/tty.usbserial-A40014iU",9600);

//外形線なし
noStroke();
}

void draw(){
//背景を黒で塗る
background(0);

//64個分のピクセルの処理
for(int i=0;i<64;i++){
//映像の各ピクセルの色の値を
//明るさの値に変換する
pixelValue[i]=int(brightness(video.pixels[i]));

//円の塗色(赤の値)に代入
fill(pixelValue[i],0,0);
//円を描画
ellipse((i%8)*20+10,(i/8)*20+10,15,15);

//値を送信
if(start){
port.write(pixelValue[i]);
}
}
}

//キャプチャ映像読み込み
void captureEvent(Capture video) {
video.read();
}

クリックでシリアル通信開始
void mousePressed(){
start=true;
}


Processingの方では、VideoライブラリSerialライブラリの二つを取り込む必要があります。マトリクスLEDが8×8の解像度なので、Webカメラから取り込む映像の解像度も8×8にしておきます(カメラ映像の横縦比は4:3なので、少し縦長の映像になってしまいます)。
*Windowsの場合、そのままの設定ではこのVideoライブラリを使用することができません。WinVDIG 1.0.1をインストールする必要があります。
「pixelValue[i]=int(brightness(video.pixels[i]))」では、まず映像の各ピクセルの色をpixels[]で読み込みます。pixels[]は、RGBの三色の値(三つの値)を含んでおり、brightness()で括ると明るさの値(一つの値)に変換されます(0〜255)。変換された値はfloat(小数)なのでint()で括って整数に変換しておきます。この値を、fill()の赤の値に代入し(緑と青は0)、LEDのような赤い円をellipse()を使って64個描画します。8×8を160×160の画面で表示しているので、20×20ピクセルのグリッド状に配置されます。ellipse()の直径はとりあえず15にしておきました。ellipse()のXとY座標は、「%」と「/」を使って計算します(X座標となる「(i%8)*20+10」は、iを8(横幅)で割った余りに20ピクセル掛けて、さらに10ピクセル足すことでellipse()が20×20のグリッドの中心に来るように位置調整しています)。最後に「port.write(pixelValue[i])」で、Arduinoへ各ピクセルの明るさの値を送信します。今回は画面をクリックしたらシリアル通信が開始されるようにしています。

次にArduinoの方に移ります。冒頭で書いたように、今回はマトリクスLEDを、ICを使わず直結します。個々のLEDはダイナミック点灯しているので、点灯時間の長さによって明るさを調整することになります。点灯時間が短ければ暗くなり、長くなれば明るくなります。つまり、Processingから送られて来た明るさの値(0〜255)を、個々のLEDの点灯時間に反映させるプログラムになるということです。マトリクスLEDとの接続方法や詳細については「Arduino マトリクスLED1」を参照してください。

Arduinoのプログラム:

//8x8の二次元配列を用意
byte matrix[8][8];

void setup(){
//出力ピンの設定、すべてオフにする
for(int i=2;i<=17;i++){
pinMode(i,OUTPUT);
digitalWrite(i,LOW);
}
//シリアル通信開始
Serial.begin(9600);
}

void loop(){
//シリアル通信(64個分のデータ)
if(Serial.available()>63){
for(int k=0;k<8;k++){
for(int l=0;l<8;l++){
//読み込んだ値を配列に代入
matrix[k][l]=Serial.read();
}
}
}

//各LEDの点灯制御
for(int i=2;i<=9;i++){
//列の点灯
digitalWrite(i,HIGH);

for(int j=10;j<=17;j++){
//行の点灯
digitalWrite(j,LOW);
//行の点灯継続時間
delayMicroseconds(1+matrix[i-2][j-10]);
//行の消灯
digitalWrite(j,HIGH);
//行の消灯継続時間
delayMicroseconds(256-matrix[i-2][j-10]);
}
//列の消灯
digitalWrite(i,LOW);
}
}


以前の「Arduino マトリクスLED1」とほぼプログラム内容は同じです。異なる部分は、シリアル通信と各LEDを点灯/消灯させる継続時間の部分です。用意する二次元配列は、boolean型ではなくbyte型(0~255の値なので)にしています。
シリアル通信上で干渉しないようにするため、Arduino基盤の0番ピンと1番ピンには何も接続しないことにしています(2〜17番ピンを使用)。シリアル通信では、Processingから送られてくる64個のデータをSerial.available()でカウントして、それぞれの値を予め用意しておいた二次元配列matrixに保存しておきます。送られてくるデータは0〜255(明るさの値)となります。そしてダイナミック点灯していく際に、明るさの値をdelayMicroseconds()に代入して、点灯継続時間と消灯継続時間に割り当てます。delayMicroseconds(0)としてしまうと、0マイクロ秒としては扱ってくれないので、delayMicroseconds()の括弧内に入れられる最小値は1にしてあります。最小1マイクロ秒の点灯時間かつ最大256マイクロ秒の消灯時間のときが最も暗くなるときです。その逆で、最大256マイクロ秒の点灯時間かつ最小1マイクロ秒の消灯時間のときが最も明るくなります。個々のLEDは257マイクロ秒ごとにダイナミック点灯していることになります。個々のLEDの点滅を300マイクロ秒程度にすると点滅しているようには見えないので、今回の257マイクロ秒周期で点滅させれば、ほぼ問題ないでしょう。

関連:
・「シリアル通信1〜5
・「Arduino マトリクスLED1
・「Processing Video(Webカメラ)

ロジクールストア(ウェブカメラカテゴリ)

8/09/2008

Arduino マトリクスLED2/MAX7219

以前の「Arduino マトリクスLED1」では、8×8のマトリクスLEDをArduino基盤に直接接続して点灯させましたが、今回はMAX7219というLEDディスプレイドライバICを使って点灯してみます。Arduino基盤にマトリクスLEDを直結すると16個の端子が必要でしたが、MAX7219を使えば5V電源とGND以外に3本の端子で制御することが可能になります。原理的には、シリアルデータを送り、マトリクスLEDを表示させることになりますが、ArduinoにはマトリクスLED用のライブラリ(Wiringのライブラリ)があるので今回はそれを使ってプログラムしてみます。今回使用する8×8のマトリクスLEDは、以前同様、秋月電子で購入したものです。
以下のように、マトリクスLEDの各端子とMAX7219の端子が対応します(マトリクスLEDモジュールの側面に小さな凹凸部があり、MAX7219には端部に半円状の凹部や小さな丸印があるので、それらを手掛かりに向きを合わせてください)。



その他のMAX7219の端子については、
DIN:Arduinoからのシリアルデータ入力端子
DOUT:複数のMAX7219を接続する端子
VCC:5V電源
I_SET:接続する抵抗によって輝度を変えます
GND:AduinoのGNDと共有
LOAD:Arduinoからのデータ入力のロード用端子
CLK:Arduinoからのクロック信号入力端子

Arduino基盤との接続は以下のようになります。I_SETとLOAD端子には、10KΩの抵抗を接続して下さい(I_SETの抵抗値を上げれば暗くなり、下げれば明るくなります)。画像をクリックすれば大きくなります。



既存のサンプルを使って点灯実験してみます。Arduinoの画面からFile>Sketchbook>Examples>Library-Matrix>hello-matrixを選ぶと、プログラムが現れますが、ピン設定に少し変更を加えます。
既存サンプルでは、

pin 0: data (din)
pin 1: load (load)
pin 2: clock (clk)

となっていますが、0番ピンと1番ピンは使わず、

pin 2: data (din)
pin 3: load (load)
pin 4: clock (clk)

に変更することにします。こうすることで、プログラムのデータをアップロードする時やシリアル通信の際に信号が干渉されずにすみます。


//ライブラリを取り込む
#include <Sprite.h>
#include <Matrix.h>

//各ピンの設定
//pin 2: DIN
//pin 3: LOAD
//pin 4: CLK
Matrix myMatrix = Matrix(2, 4, 3);

void setup(){
}

void loop(){
myMatrix.clear(); //表示内容をクリアする

delay(1000);

//ピクセルを指定し表示する
myMatrix.write(1, 5, HIGH);
myMatrix.write(2, 2, HIGH);
myMatrix.write(2, 6, HIGH);
myMatrix.write(3, 6, HIGH);
myMatrix.write(4, 6, HIGH);
myMatrix.write(5, 2, HIGH);
myMatrix.write(5, 6, HIGH);
myMatrix.write(6, 5, HIGH);

delay(1000);
}


以下のように表示(1秒おきに点滅)されれば、配線などに問題ないことになります。write()で、X座標(0〜7)とY座標、ならびにHIGHかLOW(あるいは1か0)を代入し個々のLEDの点灯/消灯を指定します。



最初のArduino側のピンの設定(既存サンプルのコードに変更を加える)と、配線を間違わなければ、座標指定で点灯/消灯を制御できるので、それほど難しくはないと思います。今回のマトリクスLED用のライブラリを使うには、メニューバーのSketch>Import Library>MatrixとSpriteを選択すればインクルードされます。

次は、Spriteという基準となる絵柄を設定し、それが動く(横に流れる)表示方法を行います。Arduinoの画面からFile>Sketchbook>Examples>Library-Matrix>sprite-animationを選択し、このサンプルを使うことにします。前回同様、ピン設定は、

pin 0: data (din)
pin 1: load (load)
pin 2: clock (clk)

となっていますが、0番ピンと1番ピンは使わず、

pin 2: data (din)
pin 3: load (load)
pin 4: clock (clk)

に変更します。


//ライブラリを取り込む
#include <Sprite.h>
#include <Matrix.h>

//各ピン設定
//DIN:2
//LOAD:3
//CLK:4
Matrix myMatrix = Matrix(2, 4, 3);//DIN,CLK,LOAD

//スプライトの指定
//幅、高さ、絵柄を二進数で指定
Sprite wave = Sprite(
8, 4,
B00011000,
B00100100,
B01000010,
B10000001
);

void setup()
{
}

//X座標の変数を用意
int x = 0;

void loop(){
//スプライトの配置
myMatrix.write(x, 2, wave);
//もうひとつのスプライトの配置
myMatrix.write(x - 8, 2, wave);
//点灯時間設定
delay(75);
//画面をクリア
myMatrix.clear();

//アニメーション(カスケーディング)
if(x == 8){//8になったら0に戻す
x = 0;
}
x++;//X座標の変数を増加させる
}


Sprite()で、絵柄の幅、高さを指定し、二進数で点灯させる絵柄(0は消灯箇所、1は点灯箇所)をつくり設定します。write()で、絵柄の配置座標(左上の座標)と絵柄のオブジェクトを指定し表示させます。write()の括弧内のX座標やY座標は変数を用いて変化させることができるので、カスケーディング(絵柄が流れて表示される)の制御も簡単にできます。このサンプルでは、8コマ前にもうひとつの同じ絵柄を用意しておき、二つの絵柄を使用して途切れなく連続して絵柄が流れていくように表示しています。

また以下のようにSpriteを複数用意しておけば、入れ替わりで異なる絵柄を表示できます。


//ライブラリを取り込む
#include <Sprite.h>
#include <Matrix.h>

//各ピンの設定
//pin 2: DIN
//pin 3: LOAD
//pin 4: CLK
Matrix myMatrix = Matrix(2, 4, 3);

//スプライトの指定
//幅、高さ、絵柄を二進数で指定
Sprite pattern1 = Sprite(
8, 8,
B11111111,
B00000000,
B11111111,
B00000000,
B11111111,
B00000000,
B11111111,
B00000000
);

Sprite pattern2 = Sprite(
8, 8,
B10101010,
B10101010,
B10101010,
B10101010,
B10101010,
B10101010,
B10101010,
B10101010
);

Sprite pattern3 = Sprite(
8, 8,
B11110000,
B11110000,
B11110000,
B11110000,
B00001111,
B00001111,
B00001111,
B00001111
);

Sprite pattern3 = Sprite(
8, 8,
B00001111,
B00001111,
B00001111,
B00001111,
B11110000,
B11110000,
B11110000,
B11110000
);


void setup()
{
}

//X座標の変数を用意
int x = 0;

void loop(){
//スプライトの配置
myMatrix.write(0, 0, pattern1);
//点灯時間設定
delay(200);
//画面をクリア
myMatrix.clear();

myMatrix.write(0, 0, pattern2);
delay(200);
myMatrix.clear();

myMatrix.write(0, 0, pattern3);
delay(200);
myMatrix.clear();

myMatrix.write(0, 0, pattern4);
delay(200);
myMatrix.clear();
}


関連:
・「Arduino マトリクスLED1」(ICを使わずマトリクスLEDを制御する方法)
MAX7219データシート(MAXIM JAPAN)

7/05/2008

Arduino マトリクスLED1

今回はマトリクス LEDの表示実験をします。秋月電子で購入した8×8マトリクスLEDを使用します。8×8なので合計64個のLEDが搭載されています。それぞれのLEDを直接点灯させるためには、64個分の端子が必要であり、Arduinoの端子の数以上になってしまいますが、ダイナミック点灯(説明以下)という方法で可能になります。
ArduinoにはマトリクスLED用ライブラリWiringのライブラリを利用)を使う方法もありますが、MAX7219というLEDディスプレイドライバICを必要とします。このICを使えば、Arduinoからはシリアル通信を通して3本の線で制御することができます(MAX7219との接続サンプル)。また、74HC595というICを二つ使う方法(サンプル)もあります。
今回はICを使わずに、マトリクスLEDの16個の端子にArduinoを接続する方法で制御します。16個の端子のうち8個がアノード(プラス)で残り8個がカソード(マイナス)の端子になります。LEDの点灯箇所と端子の対応は以下のようになります。LEDモジュールの4辺(側面)には小さな凹凸があるので、それを手掛かりに向きを合わせて下さい。



Arduinoからはダイナミック点灯という方法で制御することになります。そうすることで、合計16本の端子で64個のLEDを個別に制御することができます。ダイナミック点灯は、順番に一列(8個のLED)ずつ高速点灯させ、人間の目には8列全部が同時に点灯しているように見せる方法です。列ごとに点灯させる順番やタイミングをdigitalWrite()のHIGH/LOWの組合わせで制御します。基本的には、横方向の端子にプラスを、縦方向の端子にマイナスを接続することで、その交差した部分のLEDが点灯する仕組みになっています。
Arduinoのデジタル出力ピンは、通常0から13番までしかないのですが、pinMode()で設定することで、アナログ入力の6個のピン(0から5番ピン)もデジタル出力用に切り替えることができます。その場合、順番にデジタル出力14から19番のピンとして扱うことができ、合計で20個のデジタル出力が可能になります。もともとデジタル入出力ピンの0番と1番はシリアル通信などで使うので(プログラムをアップロードするときにも干渉することがあるので)、できれば接続しないほうがいいでしょう。今回は2番ピンから17番ピンまでを使うことにします。
LEDのカソード側(マイナス側)には抵抗(1KΩ)を取付けます。Arduinoのデジタル出力13番ピンには既に1KΩの抵抗が内蔵されているので、それ以外の7端子に取付けることとします。抵抗をつけなくても多少負荷はかかりますが実験はできます。ただし、Arduinoの13番ピンを接続している列(4列目)だけが、暗くなってしまいます。
接続方法は以下のようになります(画像をクリックすれば大きくなります)。ブレッドボードで実験する場合、大きなもの(幅のあるもの)を用意するか、小さなブレッドボードを2枚用意して、2枚にまたがるようにLEDモジュールを差し込むと作業しやすいと思います。



それぞれのArduinoの出力ピンで行と列で表せば、以下のようになります。



まず、一行ずつ点灯させていきます。
PIN_2行目のPIN_10列目とPIN_12列目の二つを点灯させるためには、

PIN_2:HIGH
PIN_10:LOW
PIN_12:LOW

となりますが、同時に消灯させる列もあるので

PIN_11:HIGH
PIN_13:HIGH
PIN_14:HIGH
PIN_15:HIGH
PIN_16:HIGH
PIN_17:HIGH

とします。行(PIN_2〜PIN_9)、列(PIN_10〜PIN17)とすれば、
点灯させるには、

行:HIGH、列:LOW

という組合わせになり、
消灯させるには、

行:HIGH、列:HIGH
行:LOW、列:HIGH
行:LOW、列:LOW

という3つの組合わせがあります。列(縦)側の端子と行(横)の端子の両方をHIGH(5V)にすると消灯するということを覚えておいて下さい(電位差が0Vになるので)。それ以外の「LOW:HIGH」、「LOW:LOW」の組合わせでも消灯します。

次のPIN_3行目に移る前に(ある程度の時間点灯させた後に)PIN_2行目をLOWにすることで、次回PIN_3行目を制御するときにPIN_2行目が点灯しないように後処理しておきます。PIN_3行目についても同様の手順で行い、合計8回高速に繰り返すことで、全体が点灯しているように見えます。

まずは、以下のプログラムで、64個のLEDが順番に個別に点灯するか実験してみます。


void setup(){
//16本のピン(2~17)を出力に設定
for(int i=2;i<=17;i++){
pinMode(i,OUTPUT);
}
}
void loop(){
//行(横)の繰り返し処理
for(int i=2;i<=9;i++){ //行(2~9番ピン)
digitalWrite(i,HIGH); //HIGHで点灯

//列(縦)の繰り返し処理
for(int j=10;j<=17;j++){ //列(10~17番ピン)
digitalWrite(j,LOW); //LOWで点灯
delay(100); //点灯時間
digitalWrite(j,HIGH); //列をオフにする
}

digitalWrite(i,LOW); //行をオフにする
}
}


それぞれ一つずつ順番に点灯していけば、配線などに間違いがないということになります。プログラムの順番としては、1行目の中の1列目から8列目までを順番に点灯し、次に2行目の中の1列目から8列目までを順番に点灯し、同様に8行目まで繰り返します。delay(100)の部分が一つのLEDの点灯時間であり、0.1秒に設定されています。この点灯時間を短くしていくと、残像現象により一度に複数のLEDが点灯しているように見え始めます。次のサンプルでは、点灯時間を0.03秒に設定し、二次元配列を用いて、予め用意しておいた表に基づいて点灯させる方法を行います。


boolean matrix[8][8]={
{0,0,0,1,1,0,0,0},
{0,0,1,0,0,1,0,0},
{0,1,0,0,0,0,1,0},
{0,1,0,0,0,0,1,0},
{0,1,0,0,0,0,1,0},
{0,1,1,1,1,1,1,0},
{0,1,0,0,0,0,1,0},
{0,1,0,0,0,0,1,0}
};

void setup(){
for(int i=2;i<=17;i++){
pinMode(i,OUTPUT);
digitalWrite(i,LOW);
}
}
void loop(){
for(int i=2;i<=9;i++){
digitalWrite(i,HIGH); //行:HIGHで点灯
for(int j=10;j<=17;j++){
if(matrix[i-2][j-10]==1){//点灯条件
digitalWrite(j,LOW); //列:LOWで点灯
}
//上のif文のかわりに以下でも可
//digitalWrite(j,!matrix[i-2][j-10]);

delayMicroseconds(300);//0.03秒点灯
digitalWrite(j,HIGH);//オフにする
}
digitalWrite(i,LOW);//オフにする
}
}


8×8の二次元配列matrix(名前は任意)を用意して、その配列内に0か1で消灯/点灯の表をつくります。matrix[行][列]という対応になります。matrix[0][3]であれば、0行3列目の値となります。
このフォーマットをもとに、とりあえず「A」という文字をつくってみました。表の「1」のところを点灯させるために、if文で条件設定し、表座標の値が「1」なら、その箇所をLOWで出力します。今回接続しているピンの番号と配列の順番の数値のつじつまを合わせるために、「matrix[i-2][j-10]」としています(行:2番ピンが0番目の内部配列に対応するので[i-2]、列:10番ピンが内部配列内の0個目の値に対応するので[j-10]になります)。if文を使わずに、digitalWrite(j,!matrix[i-2][j-10])と書いても同じことになります。今回は、LOWで点灯するので、「!」を使って表座標の値が「0」のとき「1」(HIGH)になり、「1」のとき「0」(LOW)になるように反転します。
delayMicroseconds(300)は、一つずつ高速に点滅する時間です。高速なので点滅しているようには見えませんが、もし点滅しているように見えてしまう場合は数値を低くして、点滅のスピードを上げて下さい。
このように二次元配列matrixを使うことで、64個分のLEDの点灯/消灯状態を指定して表示可能になります。

次は表示文字をカスケーディング(文字が流れるように動く)してみたいと思います。左向きに文字が流れるようにするには、

matrix[k][l]=matrix[k][l+1];

というように、配列内の縦一列の値を右隣の値(+1の列の値)に移し替えればいいことになります。さらに、左側へ流れた文字が再び右側から出てくるように繰り返して表示されるようにするためには、画面右端の8列目の値(配列内7番目の値)が、1列目(配列内0番目の値)になるようにします。使用している二次元配列は8×8ですが、余白をもう一列つけたして8×9にしておきます。それで、

matrix[k][8]=matrix[k][0];

とすれば、余白である9列目(配列内の8番目の値)に1列目(配列内の0番目の値)が代入され、繰り返し表示されることになります。しかしこのままでは、横に流れるスピードが速すぎるので、while文を用いて表示される時間を引き延ばします。while文では、以下のように()内に条件を入れ、その条件が満たされている限り繰り返し処理を行います。

int count=5;
while(count>0){
//繰り返される内容をここに書く

count--; //カウント数を減らしていく
}

という書き方をすれば、while(){...}内の処理を5回繰り返すということになります。つまり、先ほどのLEDを順番に点灯させるプログラム全体をwhile(){...}で括ってしまうということになります。以下のプログラムでは、1ループの中で、LEDを表示させる処理を5回繰り返し、それからカスケーディングのための処理を1回行う内容になります。


//余白の列を付けたし配列を8x9にしておく
boolean matrix[8][9]={
{0,0,0,1,1,0,0,0,0},
{0,0,1,0,0,1,0,0,0},
{0,1,0,0,0,0,1,0,0},
{0,1,0,0,0,0,1,0,0},
{0,1,0,0,0,0,1,0,0},
{0,1,1,1,1,1,1,0,0},
{0,1,0,0,0,0,1,0,0},
{0,1,0,0,0,0,1,0,0}
};

void setup(){
for(int i=2;i<=17;i++){
pinMode(i,OUTPUT);
digitalWrite(i,LOW);
}
}
void loop(){
int count=5;//この値を大きくすればゆっくり流れる
while(count>0){
for(int i=2;i<=9;i++){
digitalWrite(i,HIGH); //行:HIGHで点灯
for(int j=10;j<=17;j++){
if(matrix[i-2][j-10]==1){//点灯条件
digitalWrite(j,LOW); //列:LOWで点灯
}
//上のif文のかわりに以下でも可
//digitalWrite(j,!matrix[i-2][j-10]);

delayMicroseconds(300);
digitalWrite(j,HIGH);//オフにする
}
digitalWrite(i,LOW);//オフにする
}
count--;//回数カウント1回減らす
}

//カスケーディング
for(int k=0;k<=7;k++){
//0列目から余白の8列目まで計算する
for(int l=0;l<=8;l++){
if(l==8){ //配列8列目は0列目の値を代入
matrix[k][8]=matrix[k][0];
}else{ //それ以外の列は+1列の値を代入
matrix[k][l]=matrix[k][l+1];
}
}
}
}


また、配列を大きくして以下のようにすれば、複数の文字を表示できます。


//8x25の配列にする(25列目は余白)
boolean matrix[8][25]={
{0,0,0,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0},
{0,0,1,0,0,1,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0},
{0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0},
{0,1,0,0,0,0,1,0,0,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,0},
{0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0},
{0,1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0},
{0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0},
{0,1,0,0,0,0,1,0,0,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0}
};

void setup(){
for(int i=2;i<=17;i++){
pinMode(i,OUTPUT);
digitalWrite(i,LOW);
}
}
void loop(){
//変更なし
int count=5;
while(count>0){
for(int i=2;i<=9;i++){
digitalWrite(i,HIGH);
for(int j=10;j<=17;j++){
digitalWrite(j,!matrix[i-2][j-10]);
delayMicroseconds(300);
digitalWrite(j,HIGH); //LED OFF
}
digitalWrite(i,LOW); //LED OFF
}
count--;
}

//カスケーディング
for(int k=0;k<8;k++){
//以下の配列数の値を変更しておく
for(int l=0;l<=24;l++){
if(l==24){
matrix[k][24]=matrix[k][0];
}else{
matrix[k][l]=matrix[k][l+1];
}
}
}
}


今回のプログラムでは、loop(){...}内に、while(){...}という小さなループがあり、その中に、for(){...}で横1行ずつの繰り返し処理を行い、さらにその中にもうひとつのfor(){...}で縦1列ずつの繰り返し処理を行うというように、何重にも繰り返しループの処理が組み込まれています。結果的なコードを見ると分かりにくいかもしれませんが、最初から順を追って考えていけば、その仕組みが見えてくると思います。

関連:MAX7219(LEDディスプレイドライバIC)を用いる方法




[目次:Processing関係]  [HOMEへ戻る]  [目次:Arduino関係]