INDEX(各項目ごとの目次)

[HOME]  [Processing関係]  [Arduino関係]  [マテリアル関係]  [秋葉原工作マップ]

2008年用ですが、部分的に内容を更新しています(2010/06/14)。
また、[建築農業工作ゼミ2009-2010]とも連動していますので、そちらにも幾つかサンプルがあります。
:

検索キーワード「processing」に一致する投稿を関連性の高い順に表示しています。 日付順 すべての投稿を表示
検索キーワード「processing」に一致する投稿を関連性の高い順に表示しています。 日付順 すべての投稿を表示

11/15/2008

Arduino デジタルカラーセンサ S9706

今回は秋月電子で購入したデジタルカラーセンサS9706の実験をします。S9706は、RGB3色の同時測光が可能であり、9×9素子(高感度)と3×3素子(低感度)の感度設定が2段階あり、感度設定用の端子(Range端子)をHIGHまたはLOWで切り替えて設定できます。検出結果は12ビットの値でシリアル出力されます。S9706は表面実装用の小さな部品(1.27mmピッチ)なので、DIP変換基板などにハンダ付けして使用したほうが実験しやすくなります。

S9706には、

・Range端子(感度設定)
・Gate端子(測光時間の設定)
・CK端子(クロックパルス)
・Dout端子(出力)
・Vdd端子(5V電源)
・Gnd端子(グランド)

の6端子あります。
それぞれを以下のように接続します。尚、測光時間を調節できるように可変抵抗器も接続することにします。



データシートの動作手順によれば、以下のように説明されています。
(1)Gate端子とCK端子をLowにします。
(2)Range端子で、所望の感度を選択します(今回は、可変抵抗器で調節可能にしておきます)。
(3)Gate端子をLow→Highにして光量の積算を開始します。
(4)所望の積算時間の後にGate端子をHigh→Lowにして光量の積算を終了します。
(5)測定データは、CK端子に36のCKパルスを入れることで、Dout端子から出力されます。

Dout端子からの12ビットのシリアル出力を読み込むためには、CK端子へ12回のパルスを3回送る必要があります。最初の12パルスによって赤、次の12パルスによって緑、そして最後の12パルスによって青が出力されます。この部分の手続きは、shiftIn()というファンクション(名前は任意)を用意することにします。付属のデータシートのタイミングチャートに従ってプログラムしていくことにします。
最終的に得られたRGB三色の値(12ビット:0~4095)をシリアル通信でProcessingへ送信し、Processingの画面上で色表示することにします。

「Arduinoのプログラム」:

 [プログラムを表示]


アナログ入力に接続された可変抵抗器で、測光時間を1ミリ秒から1024ミリ秒まで可変的に設定可能になります。測光時間が短ければ全体的に暗い色として認識されるので適宜調節してください(白色LEDを取り付けて反射光を使って読み取らせることもできると思います)。
12ビットの値を読み込む処理をするint shiftIn(){...}では、一色につき12回CK端子へパルス(HIGH:1μsec+LOW:1μsec)を送ります。12回分のパルスをfor文で繰り返し処理させています。for(){...}の中では、digitalWrite(CK,HIGH)で1回HIGHを送ったあと1マイクロ秒待機すると、Dout端子から1ビット分の出力があるので、digitalRead(DOUT)でHIGHかLOWかを読み込みます。そしてdigitalWrite(CK,LOW)によって、CK端子をLOWに戻しておきます。
読み込み値を、
000000000000~111111111111(十進数の0~4095)
までの二進数で処理するため、digitalRead(DOUT)がHIGHの場合は12ビット中のその桁が1になります。S9706では、右の桁から出力されます。つまり、for(){...}では、最初に処理される桁は右側の一桁であり、最後に処理される桁は左側の一桁(12桁目)になります。



Processingの方では4つの矩形を用意し、RGBの三色それぞれの色面とRGBを合成した色面として表示します。Arduinoとのシリアル通信は文字列で行います(複数の文字列のシリアル通信は「Arduino-Processing シリアル通信5」を参照してください)。Processing側でクリックしたらシリアル通信を開始することにします。


Processing上の画面:左から赤、緑、青、3色合成

「Processingのプログラム」:

 [プログラムを表示]


Arduinoからは0~4095の範囲で値が送られてくるので、fill(r,g,b)の各値に代入するため、map()を使って0~255までの値(さらにint()で括って整数に変換)に変換しています。

4/19/2008

Processingのダウンロードとインストール

まずは、今後の制作や表現をアシストするプログラミングの基本から始めます。
このゼミでは、Processingという開発環境(プログラミングのためのソフト)を用います。
無料でインターネットからダウンロードして利用でき、図形描画、画像、動画、音、3Dモデル、外部機器との接続(Webカメラやゲームコントローラ、自作の入出力ディバイスなど)、様々なものを扱うことが可能となります。
Processing(http://processing.org)のサイトにアクセスし、サイト内のダウンロードページ(http://processing.org/download/index.html)からダウンロードすることができます。




上画像のバージョンは135ですが、最新版(2010年5月現在では)は1.1になっています。

ダウンロードしたファイルをダブルクリックして展開するとProcessingというフォルダが現れ、それをMacintoshの場合アプリケーションのフォルダ、Windowsの場合Program Filesに移し入れます。これでインストールは完了です。
インストールしたProcessingのアイコンをダブルクリックすればアプリケーションが開きます。

8/30/2008

Arduino タッチパネル(4線式)4-wire touch panel

*Some are written in English at the moment(sorry not all of them...)
This example shows how to use a touch panel/screen with an Arduino board plus a serial communication to a Processing program, which draws where to touch on the touch panel.
This is not about a multi-touch function, only single point on the touch panel can be detected.

今回は、4線式のタッチパネルをArduino基盤に接続し操作実験してみたいと思います。
タッチパネルには、4線式や5線式という比較的簡単な構造になっているものがあります。今回使うタッチパネルは、指先やペン先で触れた一点の位置(X座標値とY座標値)を検出可能にするものです(複数の点を同時検出可能なマルチタッチではありません)。
基本的には、X座標に2線、Y座標に2線あり、合計4線あります。手順としては、まずX座標を検出、そしてY座標を検出というように別々(交互)に行います。タッチパネル自体がX座標用とY座標用に対応した2層の抵抗になっており、X座標(横方向)だけで考えれば、タッチパネルの左端に0V、右端に5Vを接続しておいて、指先で触れた箇所で分圧される仕組みになっています。つまり、X座標の左に行くほど0Vに近く、中心に触れれば約2.5V、右に行くほど5Vに近い電圧が読み取れることになります。X座標を読み取る際には、使用していないY座標の2線のうちの1本を使います。X座標を検出したら、検出対象をY座標に切り替えて同様の方法で検出を続けます。下の図では、タッチパネルの2層あるうちのX座標用の層を押せば、下にあるY座標用の層と接触し、その地点での分圧された電圧の値をY座標用の層から読み込むことができます。
There are two layers of conductive films on a 4-wire touch panel, the one for x-coordinate and the other for y-coordinate. Each layer is connected to GND and 5V on the egdes. Pressing the x-coordinate layer with your finger, then the x-coordinate layer will contact to the other layer(y-coordinate layer) underneath. At this moment the voltage is devided at the point where the two layers are touching, and the devided valtage can be read from the edge of the y-coordinate layer(the y-coordinate layer is working as a conductive film for the x-coordinate film at this time).



Arduino基盤との接続は、以下のようにアナログ入力の0〜3番ピンに接続することにします(X座標用に0番ピンと1番ピン、Y座標用に2番ピンと3番ピンを使用)。通常タッチパネルなどの薄型の機器にはFPC(フレキシブルプリント基板)/FFC(フレキシブルフラットケーブル)の端子がついています。Arduino基盤からのワイヤーと接続するためにはFFC用コネクタを介して接続します(直接ハンダ付けできないので)。
X座標を計測中にはyLowの端子からX座標の分圧された電圧を読み取るので(Y座標を計測中にはxLowの端子で読み取る)、タッチパネル上に何も触れていない時は、xLow端子に0Vが接続されるようにするため、プルダウン抵抗を接続しておきます(xLowやxHighとyHighにもプルダウン抵抗をつけておきます)。


Needs a pull-down resistor for each wire from the touch panel.

処理の手順は、まずX座標(横方向)の検出を行う際には、アナログ入力の「0番ピンと1番ピン」を「14番ピンと15番ピン」としてデジタル出力に切り替え、14番ピンを0V(LOW)、15番ピンを5V(HIGH)で出力しておきます。そして、Y座標用のアナログ入力2番ピンを通してanalogRead()で値を読み込みます。読み込まれた値は、X座標の値になります。このとき、Y座標用のアナログ入力「2番ピン」がデジタル出力にならないように「16番ピン」として予めデジタル入力にしておきます。「3番ピン」も同様に「17番ピン」としてデジタル入力にしておきます。
Y座標(縦方向)の検出の際には、アナログ入力の「2番ピンと3番ピン」を「16番ピンと17番ピン」としてデジタル出力に切り替え、16番ピンを0V(LOW)、17番ピンを5V(HIGH)で出力しておきます。X座標用であった「14番ピンと15番ピン」をデジタル入力に切り替えておいてから、アナログ入力「0番ピン」を通してY座標の値をanalogRead()で読み込みます。このように1ループのなかで、X座標とY座標の検出処理を順番に行い、それぞれの座標値を得ます。
Basically using the analog pins 0,1,2,3 on an Arduino board, those pins can be both analogRead pins and digitalWrite pins(in this case:pin numbers are 14,15,16,17) depending on setting.
First, to read an x-coordinate value, set the pin14 as 0V(LOW) and the pin15 as 5V(HIGH), then the rest of the pins(either of 16 and 17) can be analogRead pins. Next, to read a y-coordinate value, set the pin16 as 0V(LOW) and the pin16 as 5V(HIGH), then read the value from either of the pin14 and the pin15. Reading the both value one after another then send them through a serial communication to Processing.

//デジタル出力用ピン番号の定義:the digital output pins
#define xLow  14
#define xHigh 15
#define yLow  16
#define yHigh 17

void setup(){
  //シリアル通信開始:start serial communication
  Serial.begin(9600);
}

void loop(){
  //X座標用端子をデジタル出力に設定し、それぞれをLOWとHIGHで出力しておく
  //set the both x-coordinate pins as digital output:one is Low the other is HIGH  
  pinMode(xLow,OUTPUT);
  pinMode(xHigh,OUTPUT);
  digitalWrite(xLow,LOW);
  digitalWrite(xHigh,HIGH);

  //Y座標用端子をLOWにしておく:the both y-coordinate pins are set to be LOW
  digitalWrite(yLow,LOW);
  digitalWrite(yHigh,LOW);

  //Y座標用端子をデジタル入力に設定:change the y-coordinate pins as digital input
  pinMode(yLow,INPUT);
  pinMode(yHigh,INPUT);
  delay(10);

  //アナログ入力2番ピン(yLowピン)で読み込み
  //read analog pin2(yLow pin) to get an x-coordinate value
  int x=analogRead(2);
  
  //Y座標用端子をデジタル出力に設定し、それぞれをLOWとHIGHで出力しておく
  //set the both y-coordinate pins as digital output:one is Low the other is HIGH 
  pinMode(yLow,OUTPUT);
  pinMode(yHigh,OUTPUT);
  digitalWrite(yLow,LOW);
  digitalWrite(yHigh,HIGH);

  //X座標用端子をLOWにしておく:the both x-coordinate pins are set to be LOW
  digitalWrite(xLow,LOW);
  digitalWrite(xHigh,LOW);

  //X座標用端子をデジタル入力に設定:change the x-coordinate pins as digital input
  pinMode(xLow,INPUT);
  pinMode(xHigh,INPUT);
  delay(10);

  //アナログ入力0番ピン(xLowピン)で読み込み
  //read analog pin0(xLow pin) to get an y-coordinate value
  int y=analogRead(0);

  if(Serial.available()>0){
    //文字列でシリアル通信:send the values as a DEC format with a delimiter
    Serial.print(x,DEC);   //X座標:x-coordinate
    Serial.print(",");     //デリミタ:delimiter
    Serial.println(y,DEC); //Y座標:y-coordinate

    //合図用信号読み込みでバッファを空にする
    //read a handshake signal from Processing and clear the buffer
    Serial.read();
  }
}

今回実験で用いたタッチパネルは、12.1インチのサイズ(横:縦=4:3)であり、指先で触れた位置が
パネル左端: 70 :a minimum value when touching the left edge of the touch panel
パネル右端:781 :a maxmum value when touching the right edge of the touch panel
パネル上端: 81 :a minimum value when touching the upper edge of the touch panel
パネル下端:822 :a maxmum value when touching the lower edge of the touch panel
の値として検出されました。パネルに触れないときには、プルダウン抵抗により0が出力されます(以下Processingのプログラムでは、XとYの読み取り値が10以上のときタッチしていることとして判別しています)。
In this example, I used a 12.1-inch(width:height=4:3) touch panel.
When touching each edge of the touch panel, the values are like the above.
When not touching the touch panel, you can read zero value from the analog pins because of the pull-down resistors.

それでは、座標値をProcessingへシリアル通信し、Processingの画面上に描画することにします。Processingへは、座標値を文字列として送信することにします(文字列のシリアル通信については「Arduino-Processing シリアル通信5」を参照して下さい。Processing側では、タッチパネル上の指先の動きに合わせて円が動くようにします。タッチパネルに触れている時といない時では円の色が変化するようにします。「s」キーを押してシリアル通信開始です。
The below Processing code is that:
a circle on the screen moves and follows where to touch on the touch panel,
the color of the circle changes depending on touching or not touching.
*Press 's' key to start the serial communication with the Arduino.

//シリアルライブラリを取り込む
import processing.serial.*;
//シリアル通信用インスタンスportを用意
Serial port;

//読み込み値の変数を用意:variables for data from the Arduino
int x,y;
//座標用変数を用意:variables for xy-coordinates to draw a circle on the screen
float xPos,yPos;

void setup(){
  //画面サイズ設定
  size(800,600);
  smooth();
  //シリアルポート設定
  port = new Serial(this,"/dev/tty.usbserial-A4001Kjl",9600);
  //「10」(ラインフィード)が来る度に
  //serialEvent()を作動させる
  port.bufferUntil(10);
  background(0);
  stroke(255); 
}

void draw(){
  //背景描画(黒)
  background(0);

  if(x>10 && y>10){//タッチしている時:when touching
    //塗り色を白にする
    fill(255);
    //読み取り値を座標にマッピングする
    xPos=map(x,70,781,0,width);
    yPos=map(y,81,822,0,height);
  }else{//タッチしていない時:when not touching
    //塗り色を黒にする
    fill(0);
  }

  //マッピングした座標を代入し円を描写:draw a circle
  ellipse(xPos,yPos,20,20);
}

//シリアル通信:serial communication
void serialEvent(Serial p){
  //文字列の変数stringDataを用意し「10」(ラインフィード)が来るまで読み込む
  String stringData=port.readStringUntil(10);

  //文字列データが空ではないとき
  if(stringData!=null){
    //文字列データに含まれる改行記号を取り除く
    stringData=trim(stringData);

    //整数型の配列data[]を用意し、
    //コンマ記号をもとに文字列データを区切って
    //配列data[]に整数化して入れておく
    int data[]=int(split(stringData,','));

    //配列data[]内のデータが2つなら、
    if(data.length==2){
      //最初のデータをxに代入
      x=data[0];
      //次のデータをyに代入
      y=data[1];

      //合図用データ送信:send a handshake signal
      port.write(65);
    }
  }  
}

//キー「s」が押されたら通信開始
void keyPressed(){
  if(key=='s'){
    //開始用データ送信:send a first handshake signal
    port.write(65);
  }
}

Arduinoから送られてくるXY座標値をmap()をつかってProcessingの画面上のXY座標値に対応させます。今回の場合、読み取りの最小値(70,81)を画面上の(0,0)に、読み取りの最大値(781,822)を(width=800,height=600)に対応させます。

通常タッチパネルはモニターと一体型になっていますが、タッチパネルだけを用いて透明で平面的な入力デバイスとして利用することも考えられます。仕組みはそれほど複雑ではないので、中古やジャンクのタッチスクリーンなどを分解して手に入れてもいいかもしれません。

以下のサイトでは、タッチパネルの構造や仕組みについて説明してあります。Other sites explaining about touch panels/touch screens.
グンゼ/タッチパネル製造
DMC/タッチパネル製造

また、以下のようなタッチパネル製品/部品などもあります。Shops selling touchpanel parts.
aitendo/タッチパネル部品販売
ストロベリーリナックス/PSP用タッチパネル
スイッチサイエンス/NintendoDSタッチスクリーン
Liquidware/Arduino TouchShield
Sparkfun/OLED+Touchscreen
iPodパーツショップ/iPhone 3G タッチスクリーン(部品)



Logitec USB対応15型タッチパネル LTP-15U
ロジテック (2004-10-31)
売り上げランキング: 13452

10/03/2008

Processing FileChooser/ファイル選択画面の表示

通常Processingでは、プログラム上で使われる画像データや音源データなどは、スケッチフォルダ内のdataフォルダ内に入れておく必要があります。ProcessingはJavaでつくられているため、JavaのGUIライブラリであるSwingを使うことで、ファイルチューザーのダイアログ画面(ファイル選択画面)を表示し、パソコン上にある任意のファイルを選択し開くことができます(尚、この方法はProcessing/Hacks/filechooserで紹介されています)。
関連:「Processing FileChooser2」(Processing 146以降/selectInput()の使い方)


(Windows XPのファイルチューザー画面/ファイル選択ダイアログ)

dataフォルダ内のデータだけでなく、デスクトップ上にある画像データなどを読み込むことができるので、入れ替わりで画像表示させるときなどに便利です。
以下は、クリックするとファイルチューザー(ファイル選択画面)というダイアログ画面が現れ、コンピュータ上の任意の場所にある画像ファイル(jpeg、png、gif、tga)を取り込んで表示するサンプルです。


//JavaのSwingを取り込む
import javax.swing.*;

//画像インスタンスを用意
PImage pimage;

//選択ファイルを用意し
//ファイルを空にしておく
String getFile = null;

void setup(){
//とりあえず表示画面を400角に設定
size(400,400);
}

void draw(){
//選択ファイル名が空でないとき
if(getFile != null){
//ファイルを取り込む
fileLoader();
}
}

//マウスを押したら
void mousePressed(){
//選択ファイル取得処理
getFile = getFileName();
}

//ファイルを取り込むファンクション
void fileLoader(){
//選択ファイルパスのドット以降の文字列を取得
String ext = getFile.substring(getFile.lastIndexOf('.') + 1);
//その文字列を小文字にする
ext.toLowerCase();
//文字列末尾がjpg,png,gif,tgaのいずれかであれば
if(ext.equals("jpg") || ext.equals("png") || ext.equals("gif") || ext.equals("tga")){
//選択ファイルパスの画像を取り込む
pimage = loadImage(getFile);
//イメージ表示
image(pimage, 0, 0, pimage.width, pimage.height);
}
//選択ファイルパスを空に戻す
getFile = null;
}

//ファイル選択画面、選択ファイルパス取得の処理
String getFileName(){
//処理タイミングの設定
SwingUtilities.invokeLater(new Runnable() {
public void run() {
try {
//ファイル選択画面表示
JFileChooser fc = new JFileChooser();
int returnVal = fc.showOpenDialog(null);
//「開く」ボタンが押された場合
if (returnVal == JFileChooser.APPROVE_OPTION) {
//選択ファイル取得
File file = fc.getSelectedFile();
//選択ファイルのパス取得
getFile = file.getPath();
}
}
//上記以外の場合
catch (Exception e) {
//エラー出力
e.printStackTrace();
}
}
}
);
//選択ファイルパス取得
return getFile;
}


選択ファイルが画像ファイルとして相応しいものであるかどうかを

if(ext.equals("jpg") || ext.equals("png") || ext.equals("gif") || ext.equals("tga")){...}

によって判別しています。選択したファイル名の「.」ドット以降が、「jpg」、「png」、「gif」、「tga」であれば、読み込み可能な画像フォーマットとして処理されます。以下の

String getFileName(){...}

以降はJavaのSwingによるファイルチューザーを呼び出して選択ファイルまでのパスを得るコードなので、そのままコピー&ペーストしても構わないでしょう。
PImageでは、jpg、png、gif、tgaの4種類が読み込み可能ですが、この部分を音源のファイルフォーマットに指定し、PImageのかわりにサウンドライブラリを使えば、音源の選択/読み込み/再生も可能になります。
ファイルチューザー画面を用いて、Processingのサウンドライブラリである「Ess」による音源再生のプログラムを以下に書きます。画面中央の白い正方形をクリックすれば、音源選択の画面が現れます。今回利用できる音源のフォーマットは、「wav」だけとします。dataフォルダの中にある音源だけでなく、iTuneなどの音楽ライブラリの中から曲を選ぶこともできるはずです。白い正方形以外の周辺の場所をクリックすれば、再度音源が再生されます。尚、「Ess」ライブラリをダウンロード+インストールしておく必要があります。また、曲などの大きな音源データの場合は、ProcessingのメニューバーからPreferencesあるいは環境設定で、メモリーを増やしておく必要があります(「Increase maximum available memory to [ ]MB」という欄にチェックを入れ、データ量に相当するメモリー数を記入して下さい)。


//Essサウンドライブラリの取り込み
import krister.Ess.*;
//音源インスタンスの用意
AudioChannel mySample;

//JavaのSwingライブラリの取り込み
import javax.swing.*;

String getFile = null;

void setup(){
size(200,200);
//Ess使用開始
Ess.start(this);
background(100,100,30);
rectMode(CORNER);
}

void draw(){
//画面中央白い正方形の描画
rect(width/2-25,height/2-25,50,50);
if(getFile != null){
fileLoader();
}
}

void mousePressed(){
//クリックの箇所が白い正方形以内なら
if(mouseX>width/2-25 && mouseX<width/2-25+50 && mouseY>height/2-25 && mouseY<height/2-25+50){
//選択ファイル所得処理
getFile = getFileName();
}
else{//白い正方形以外の箇所をクリックしたら
//音源ファイルが空ではないとき
if(mySample!=null){
//音源再生
mySample.play();
}
}
}

void fileLoader(){
String ext = getFile.substring(getFile.lastIndexOf('.') + 1);
ext.toLowerCase();
//選択したファイルが「wav」フォーマットなら
if(ext.equals("wav") ){
//音源ファイルの指定
mySample=new AudioChannel(getFile);
//音源再生
mySample.play();
}
getFile = null;
}

//ファイル選択画面、選択ファイルパス取得の処理
String getFileName(){
SwingUtilities.invokeLater(new Runnable() {
public void run() {
try {
JFileChooser fc = new JFileChooser();
int returnVal = fc.showOpenDialog(null);
if (returnVal == JFileChooser.APPROVE_OPTION) {
File file = fc.getSelectedFile();
getFile = file.getPath();
}
}
catch (Exception e) {
e.printStackTrace();
}
}
}
);
return getFile;
}

//Ess使用停止
public void stop(){
Ess.stop();
super.stop();
}

11/26/2008

Processing Webカメラ/カラートラッキング

今回はProcessingとWebカメラ(USBカメラ)を使い、色を手がかりとして画面内で動く物体の座標値を取得してみます。例えば、カメラに向かって動かした赤いボールの座標値を検出し、XY座標をArduinoへシリアル通信すれば、ボールの動きに応じてサーボなどを動かすことができます。
最初に物体の色を記憶させ、その色に近いピクセルを画面内から抜き出します。抜き出されたピクセルのXY座標値を調べ、中点や平均値を使って最終的なXY座標を導き出します。必ずしも単一の色面を背景にする必要はないのですが、色を手がかりとするので、対象とする物体と背景の色の差がある方が検出しやすくなります。

尚、Webカメラを使った画像認識や動体検知などのプログラムとしてFile>Examples>Libraries>Video(Capture)の中に「BrightnessTracking」や「FrameDifferencing」などのサンプルがあります。また、ライブラリとしては「JMyron」があります(「JMyron」のサンプルでは「Myron_CameraAsMouse」があります)。

Webカメラ(USBカメラ)を使用するには、ProcessingのVideoライブラリをインポートします。Webカメラの基本的な使い方は「Processing Video (Webカメラ)」や色抽出する方法として「Processing Webカメラを光センサとして使う」を参照して下さい。

*Windowsの場合、そのままの設定ではこのVideoライブラリを使用することができません。WinVDIG 1.0.1をインストールする必要があります。


「Processing上の画面」
(手に握った物体の動きに合わせて赤い円が動く)


今回の設定として:
・キャプチャする映像のサイズ(幅:w、高さ:h)を320×240(4:3)にします。
 (処理速度が遅くなる場合は160×120などの小さいサイズに変更して下さい。)
・最初に、画面内の対象となる物体をマウスでクリックし、そのピクセルの色を記憶しておきます。
 (背景とはできる限り異なる色の物体を選ぶ方が認識しやすくなります。)
・物体の動きに合わせて、画面上の図形(赤い円)が動くプログラムにします。

プログラムの手順としては:
・video.pixels[]で、カメラ映像内の各ピクセル(320×240=76800ピクセル)を全て読み込みます。
・対象となる物体の色(特定の1ピクセル分の色)をpixels[]で取り出します。
・各ピクセルをred()green()blue()でRGBに分解します。
・各ピクセルの色と物体の色を各RGB色ごとに比較します。
・比較した各RGB色が設定した許容値(tolerance)以内であるかを判別します。
・許容値以内のピクセルがある場合、そのピクセルの座標値を調べます。
・選択された複数のピクセルの座標を統合して、最終的にXY座標を導き出します。
・導かれた座標を図形(赤い円)の座標に代入し、物体に合わせて図形(赤い円)が動くようにします。


「選択したピクセルの色をRGBに分解し判別する」:
ひとつのピクセルであるpixels[i]には、color(R,G,B)の3つの値が含まれています(アルファ値/透明度も含めれば4つになりますが、今回はRGB値だけを扱います)。各RGB色に分解するには、red(pixels[i])、green(pixels[i])、blue(pixels[i])というようにred()、green()、blue()を用いてpixels[i]を括ります。得られる値はそれぞれ0.0~255.0の小数値になります。色を特定化しても光の反射などによって多少色が変化するので、特定化する色にある程度の許容値を与えておきます。例えば、赤の値が80の場合、許容値を10にすることで70~90の値であれば同等の色と見なすことにします。許容値が小さすぎれば、色が限定されすぎるので取りこぼしがでてきます。逆に許容値が大きすぎれば、他の色を混同してしまうので、状況に応じて調整できるようにプログラムすることにします。


「pixels[i]をXY座標に変換する方法」:
画面幅をw=320、高さをh=240とします。横一列には320個のピクセルが並んでおり、さらに320個のピクセルが240行並んでいます。つまり一つの画面内には、合計で76800個のピクセルがあります。
pixels[i]のiには、画面左上の0番目のピクセルから画面右下の76799番目のピクセルまでの連続した数値が入ります。例えば、画面上の(120,40)というXY座標は、画面幅をwとした場合、120+40*w=12920なので12920番目のピクセルであり、pixels[12920]になります。逆に、この12920番目のピクセルを画面上のX座標とY座標に変換するには、x=i%w、y=i/w(つまり、x=12920%320、y=12920/320)となります。「%」は割り算の余りを求める式で、「/」は割り算ですが整数(int)で割っているので小数点以下は切り捨てられます(四捨五入なし)。
マウスの座標値(mouseX,mouseY)であれば、pixels[mouseX+mouseY*w]になります。

上記の方法で選ばれたピクセル(物体の色のピクセル)は複数個あるので、それらのピクセルを座標値に置き換えるには幾つかの方法があります。
ひとつは:
画面内において最も右端にあるピクセルのX座標と左端にあるピクセルのX座標、ならびに上端にあるピクセルのY座標と下端にあるピクセルのY座標を調べ、右端と左端の中点をX座標、上端と下端の中点をY座標とみなす方法です。弱点としては、近似色がノイズとして画面上にある場合、そのピクセルも拾ってしまうことです。ノイズを除去するプログラムや予め画面全体にぼかしをかけることである程度回避できます。
もうひとつは:
選択したピクセル(物体の色のピクセル)が多く分布している箇所を調べ、ピクセルの分布数と位置から平均値を割り出す方法です。この場合、多少のノイズがあっても大きなずれは発生しなくなります。
その他の方法も考えられますが、今回は上記二つの方法で実験してみたいと思います。

「操作手順」:
プログラムが開始したら、画面上で対象となる物体をクリックして物体の色を記憶させます。画面左上に、10ピクセル角の矩形でその色が表示されます。直径20ピクセルの赤い円が、物体の移動に合わせて動きます(物体を追跡します)。
左右の矢印キーで色の許容値(変数:tolerance)を調節できるようにします(「←」:-1、「→」:+1)。
変化する数値をPFontを用いて表示するので、Tools>Create Font...をクリックし「Monaco-10.vlw」を取り込んでおいて下さい(「Processing 文字と画像」を参照)。
また、「c」キーを押せば、カメラセッティング画面に切り替わります(手動露出や手動コントラストなどに切り替えた方が認識しやすくなります)。
画面上に許容値を含めた物体の色がある場合は、「detected」という文字が表示されます。もし、近似色がない場合は「none」が表示され、赤い円は前回の位置に留まります。再度近似色が画面内に現れれば、赤い円はその位置に移動します。


「左右端、上下端の中点を座標値にするプログラム」:

 [プログラムを表示]


*プログラムを開始する前にTools>Create Font...をクリックし「Monaco-10.vlw」を取り込んでおいて下さい(スケッチフォルダの中のdataフォルダ内にフォントが保存されます)。
複数あるピクセルのうち左端、右端、上端、下端のピクセルを抜き出すために、最小値と最大値を求めるためのmin()max()を用いました。各ピクセルの座標値を比較し、X座標においては最小座標値を左端座標値とし、最大座標値を右端座標値として扱います。Y座標に対しても同様に導き出します。そして、それらの中点を最終的なXY座標値とします。



「分布するピクセルから割り出す方法」:
次は、物体の近似色のピクセルの分布から平均値を求めて座標値を割り出す方法についてです。
先ほどの方法と同様にfor()で全てのピクセルの色を識別し、その中から物体の近似色のピクセルを選びます。その際に近似色のピクセルの個数と、そのピクセルのXY座標値をそれぞれ加算しておきます。最終的に加算されたそれぞれの値を近似色のピクセル数で割って平均値を求めます。例えば、X座標値100に10個、101に12個、102に8個あるときは、(100*10+101*12+102*8)/(10+12+8)=100.9333となります。Y座標についても同様に求めておきます。

以下のプログラムでは、カメラからの映像を左右反転の鏡像として表示することにします(カメラに向かって、右に物体を動かせば、画面上でも右に動くようにします)。
「v」キーを押すことで、カメラからの映像を表示/非表示切り替え可能にします。
円の動きを滑らかにするために、移動量にフィルタをかけることにしました。
物体検知用のフラグがtrueの場合、許容値toleranceは自動的に下がり、falseの場合は自動的に上がるようにしました(変化の範囲は2~25に設定してあります)。設定した最大許容値:25以内の近似色が画面内にある場合は反応してしまいます(フラグがtrueになる)。不自然な反応をとる場合、最大許容値を下げるか、前回のプログラムのように手動で調整する内容に変更してみてください。
赤文字部分が、前回と異なる部分です。
前回同様、プログラムを開始する前に、使用するフォントを取り込んでおいて下さい(「Processing 文字と画像」を参照)。

「分布するピクセルから割り出すプログラム」:

 [プログラムを表示]


*プログラムを開始する前にTools>Create Font...をクリックし「Monaco-10.vlw」を取り込んでおいて下さい(「Processing 文字と画像」を参照)。
「filterX+=(x-filterX)*0.3;」の「0.3」は円の動きをゆっくり滑らかに(鈍く)するための係数です。1.0に近づくほどフィルタの効果はなくなり、0に近づくほど鈍く動くので適度に調整して下さい。
左右反転(鏡像)しているために、円のX座標値はそのままの値ではなく「w-filterX」になっています。

「ビット演算による色変換」:
color(R,G,B,A)は、A:アルファ値(透明度)、R:赤、G:緑、B:青の4種類の8ビット(合計32ビット)の値が含まれています。32ビットの内訳(2進数の場合)は

AAAAAAAARRRRRRRRGGGGGGGGBBBBBBBB

になります。32あるそれぞれの桁には0か1が入ります。
透明度が100%(不透明)の緑であれば、

11111111000000001111111100000000

になります。16進数であれば「0xFF00FF00」や「#00FF00」になります。10進数なら「255,0,255,0」です。
上記プログラムでは、ピクセルの赤の値を調べるためにpixels[i]red()で括って

red(pixels[i])

にしましたが、

(pixels[i] >> 16) & 0xFF

というビット演算を使っても求められます。32ビットを16桁右にシフト「>>」し、下位8桁(0xFF)だけを「&」を使って取り出す(ビットマスク)という方法になります。
結果的にはこの方法の方が処理速度が上がるようです。
緑と青については、

(pixels[i] >> 8) & 0xFF //緑:8ビット右にシフトし下位8桁だけを取り出す
pixels[i] & 0xFF //青:下位8桁だけを取り出す

になります。
もし、処理速度が不安定な場合は、上記のようなビット演算を用いるか、画面サイズを小さくするか、もともとのフレームレートを下げるかなどの工夫や調整を行ってみてください。


ドライバなしですぐにコンピュータに接続可能(UVC対応)なWebカメラとして以下のようなものがあります。
Macintosh/Windows兼用です。
      

関連:
Processing Video (Webカメラ)」--Webカメラの使い方/映像にフィルタをかけて表示。
Arduino+Processing マトリクスLED+Webカメラ」--Webカメラ映像をマトリクスLEDに映す。
Processing Webカメラを光センサとして使う」--点光源で画面内に線を描く。
Processing Webカメラ/定点記録画像」--Webカメラ映像を0.5秒おきに画像保存(JPEG)する。
Processing Webカメラ/モーショントラッキング」--Webカメラを使って動体検知する。

11/02/2008

Processing サウンド/Sonia JSynプラグイン

Processingのサウンドライブラリの「Sonia」を、MacOSX(Intel)で使用する場合、新たにJSynプラグインをインストールする必要があります。現ライブラリフォルダにはMacOSX(PowerPC版)のJSyncプラグインしか含まれていないようです。
ここをクリックすると、インストール画面に移動します。移動先のページ上の「Click Here to Install JSyn Plugin」のボタンを押して新しいバージョンのJSyncプラグインをインストールしてください。

関連:
Processing サウンド4/スクラッチ」--Soniaライブラリを使って曲をスクラッチ演奏する
Processing サウンド3/テンポ」--Soniaライブラリで音源再生のテンポ変換をする
Processing サウンド2/逆再生」--Soniaライブラリで逆再生の音源をつくる
Processing サウンド1/Sonia」--Soniaライブラリで音源の再生/停止/ポーズする

 iTunes Music Store(Japan)

11/29/2008

Processing Webカメラ/モーショントラッキング

今回は、Webカメラ(USBカメラ)を使ってProcessing上で動体検知/動体追跡の実験を行ってみます。前回の「Processing Webカメラ/カラートラッキング」に似たプログラムですが、特定の色を追いかけるのではなく、画面上で動いている物体を検知し、その動きの方向に合わせて物体の座標値を取得します。逆に、動いている物体が画面内に見当たらない場合は、なにも検知しないことになります。

*Windowsの場合、そのままの設定ではこのVideoライブラリを使用することができません。WinVDIG 1.0.1をインストールする必要があります。


各ピクセルの色の取得:

・カメラ画像における、前回の画面と今回の画面の各ピクセルの色を比較します。
・320×240の画面サイズであれば76800個のピクセルをfor()を使って繰り返しの比較処理をさせることになります。
・各ピクセルの色を抽出するには、pixels[i]で順番にひとつずつピクセルを取り出します。
pixels[i]は、画面内のi番目のピクセルの色の値を返します。
・さらに、その一つのピクセルをRGBの3色に分解し、それぞれの値を取得します。
・3色のそれぞれの値を取得するには、red()green()blue()を用います。
・red(pixels[i])と書けば、そのピクセルの赤の値を取得できます(緑、青についても同様に処理)。

色の比較:
前回と今回の画面内のピクセルを比較するためには、一旦前回の全ピクセルの色情報を配列に代入して記憶させておきます。そして、記憶させておいた前回の色情報と今回の色情報を各ピクセルごとに比較します。
・色を比較するには、「前回の赤の値」から「今回の赤の値」を差し引きします(最終的に、絶対値abs()を使うので逆でも大丈夫です)。
・各色の値は0〜255までの段階があるので、その数値の差となります。緑や青についても同様に値の差を求めておきます。
・各色において、ある一定以上の差があるときに、画面内に「動作」があったと見なします。
・多少細かなノイズなどが含まれるので、差についてはある程度の許容値を設けておきます。例えば、±20以内の差であればノイズと見なし「動作なし」と判断し、それ以上の差があるときにだけ「動作あり」と見なすことにします。

平均値で座標を求める:
上記の方法で、設定した許容値を超えるピクセルがあったときに、そのピクセルの画面内でのXY座標値を調べておきます。今回の方法では、許容値を超えるピクセル(変化があったピクセル)のXY座標と個数から平均値を求め、その値をXとYの座標値として利用することにします。
例えば、X座標値100に10個、101に12個、102に8個あるときは、(100*10+101*12+102*8)/(10+12+8)=100.9333となり、この値を平均値としてX座標値にします。


(緑の部分が変化のあったピクセル、赤い正方形の位置がそれらの平均座標値、左上に許容値表示)


「変化があったピクセルを緑で表示し座標値を求めるプログラム」:
以下のプログラムでは、見やすくするために、変化があったピクセルを緑color(0,255,0)で塗りつぶすことにします。そして、それらのピクセルの平均座標値を求めて、赤い正方形を動かすことにします。
光や明るさの状況に合わせて許容値を調整できるプログラムにしておきます。
左右の矢印キーで色の許容値(変数:tolerance)を調節できるようにします(「←」:-1、「→」:+1)。

「c」キーを押せば、カメラセッティング画面に切り替わります(手動露出や手動コントラストなどに切り替えた方が認識しやすくなります)。

[プログラムを表示]



「Pongをプレイ」
次に、応用として「Pong」のパドルをモーショントラッキングで動かすサンプルをつくってみます。
動作によって変化があったピクセルの位置が画面内の左側あるいは右側を判別し、左右のパドルを個別に動かせるようにします。画面の端から50ピクセル幅のエリアで動作検知します(画面中央付近では反応しません)。


(モーショントラッキングで「Pong」をプレイする)

プレイしやすいように、カメラ映像は左右反転(鏡像)しています。
左右矢印キーで許容値を調整します(画面には許容値は表示されません)。
画面上部に点数を表示。
「c」キーでカメラセッティング。
「スペース」キーで点数をリセット。

[プログラムを表示]


関連:
Webカメラ:
Processing Video (Webカメラ)」--Webカメラの使い方/映像にフィルタをかけて表示。
Arduino+Processing マトリクスLED+Webカメラ」--Webカメラ映像をマトリクスLEDに映す。
Processing Webカメラを光センサとして使う」--点光源で画面内に線を描く。
Processing Webカメラ/定点記録画像」--Webカメラ映像を0.5秒おきに画像保存(JPEG)する。
Processing Webカメラ/カラートラッキング」--Webカメラを使い、色を手がかりに物体を追いかける。

ロジクールストア(ウェブカメラカテゴリ)

6/16/2008

Arduino 加速度センサ

今回は秋月電子で購入した「KXM52-1050」という3軸加速度センサモジュールを使い、重力方向に対する傾斜角を読み取ります。このセンサでは、XYZ軸の3軸ありますが、XとY軸だけでも三次元的な傾斜角を計測することができます。一応、センサのXYZの3つの出力端子をArduinoのアナログ入力端子にそれぞれ接続することにしますが、実際使うのはXとYの出力値とします。データシートをみながらセンサの端子を以下のように接続します。

1:5V(Arduino5V端子と共有)
2:5V(Arduino5V端子と共有)
3:GND(ArduinoGND端子と共有)
4:無接続
5:GND(ArduinoGND端子と共有)
6:X軸(Arduinoアナログ入力0番ピン)
7:Y軸(Arduinoアナログ入力1番ピン)
8:Z軸(Arduinoアナログ入力2番ピン)



加速度センサを水平なところにおけば、X軸とY軸は重力方向に対して直角なので0Gとなります。5V電源の場合、0Gは2.5Vとして出力されるとデータシートには書いてあります。ArduinoのanalogRead()の1024段階(10ビット)であれば511になるはずですが、さまざまな条件で多少の誤差を含みます。実際に使用する前に、念のためArduinoの「Serial Monitor」で加速度センサの出力値をモニタリングしてみます(Arduinoのモニタリング方法については「Arduino 圧電スピーカ」を参照」。

Arduino (Serial Monitor)のプログラム:

void setup(){
//シリアル通信開始
Serial.begin(9600);
}

void loop(){
//3つの値をアナログ入力で読み込む
int x=analogRead(0);
int y=analogRead(1);
int z=analogRead(2);

//Xの値を出力(十進数)
Serial.print(x,DEC);
//値と値の間に区切りを入れる
Serial.print(",");
//Yの値を出力
Serial.print(y,DEC);
//値と値の間に区切りを入れる
Serial.print(",");
//Zの値を出力し改行する
Serial.println(z,DEC);
delay(100);
}
}

3つの値を一行で出力する際に、Arduinoの出力画面上で読みやすいようにそれぞれの値の間に「","」の区切りの記号(コンマ)をいれます。この区切り記号は何でもいいのですが、これがないとそれぞれの数値同士が隣り合わせになって読みにくくなります(また、3つの数値をそれぞれ改行して出力すると、どれがX軸の値でどれがY軸の値なのか分かりにくくなるので、3つ出力してから改行しています)。
固定した角度で計測しても数値が安定しないので、100個の値をサンプリングして平均値を求めたいと思います。平均値のプログラムを付け加えます。100個分の値の合計となると、数字も大きくなるので「int」型の整数ではなく、より大きい値が扱える「long」型の整数を変数として使います。


//加算用の変数
long x_sum, ysum, z_sum;
//回数の変数
int count=0;

void setup(){
Serial.begin(9600);
}

void loop(){
int x=analogRead(0);
int y=analogRead(1);
int z=analogRead(2);

//それぞれに値を足していく(合計数)
x_sum+=x;
y_sum+=y;
z_sum+=z;

//回数を+1する(カウントアップ)
count++;

//100回カウントしたら
if(count>99){
//合計数を100で割って平均値を出す
Serial.print(x_sum/100,DEC);
Serial.print(",");
Serial.print(y_sum/100,DEC);
Serial.print(",");
Serial.println(z_sum/100,DEC);
//カウントを0に戻す
count=0;
//合計数を0に戻す
x_sum=0;
y_sum=0;
z_sum=0;
}
}

まずは、X軸について計測することにします。水平状態(0G)に対して定規などを用いて−90度傾けて−1Gの値、90度傾けて+1Gの値を上記プログラムを用いて計測することにします。
プログラム上では、xの値をx_sumに足していき、変数countで何回足したかを数えておきます(1ループで一回足されます)。countが100になったら、100回分の合計数であるx_sumを100で割り、その値を出力します(yについても同様に計測します)。
0Gの値については、水平に置いて計測してもいいのですが、今回は−1Gの時の値と+1Gの時の値の中点を用いることにします。よって、以下のような計測結果になります。

  角度:   重力:X軸平均値:Y軸平均値
-90度:  -1G:  316:  271
中点0度:   0G:  536:  491
+90度:  +1G:  756:  711 

これらの値は、今回使用した加速度センサと計測状況において求められた値なので、各自で似たような方法で計測してください。

それでは、この計測結果をもとに、Processingにセンサからの出力値をシリアル通信し、Processing上の3D立体を動かしてみたいと思います。センサを傾ければ、同様に3D立体も同じ角度で傾くようにします。シリアル通信は、1024段階の値を文字列で送ることにします(「Arduino-Processing シリアル通信5」を参照)。このプログラムでは、X軸とY軸だけを読み取ることにします。

Arduinoのプログラム:

void setup(){
//シリアル通信開始
Serial.begin(9600);
}

void loop(){
//2つの値をアナログ入力で読み込む
int x=analogRead(0);
int y=analogRead(1);

if(Serial.available()>0){
//Xの値を出力
Serial.print(x,DEC);
//値と値の間に区切りを入れる
Serial.print(",");
//Yの値を改行して出力
Serial.println(y,DEC);
//合図用データを読み込みバッファを空にする
Serial.read();
}
}

センサから読み取ったXとY軸の値をそのままArduinoから送信します。
Processingでは、受け取った値を角度に変換する計算が必要になります。まず0Gを基準にして、水平時の値が0になるようにオフセット値(X軸の場合:536、Y軸の場合:491)を設けて差し引いておきます。そうすれば、

  角度:   重力:   X軸:   Y軸
-90度:  -1G: -220: -220
  中点:   0G:    0:    0
+90度:  +1G: +220: +220

となります。振り幅は0Gを基準にプラスマイナス220となります。
次に角度の計算ですが単位はラジアンを用います。−90度から+90度までの範囲なので、ラジアンでいうと−PI/2から+PI/2になります(PIは円周率のπです)。X軸の値が110であれば、振り幅である220(1G)の半分なので0.5Gになります。角度については90度の半分なので45度になりそうですが、実際は30度になります。−45度の場合は、以下の図のように約−156になります。



この計算方法は以下のようにして求められます。

acos()、asin()を用いる場合:
まず、Arduinoから送られて来たX軸の値をx、オフセット値をx_offset(今回のオフセット値は536)、オフセット調整した値をx0とすると、

x0=x-x_offset;

になり、角度をradX(ラジアン)とすると

sin(radX)=x0/220;

という関係になります。例えば、x0=110を代入すればsin(radX)=1/2なので、radXは30度となります。
Processingにはasin()acos()の関数があるので、それを利用すると

radX=asin(sin(radX));

という関係になり、sin(radX)にx0/220を代入し

radX=asin(x0/220);

となることで角度radXが求まります。
Y軸についてはacos()で求めると、

radY=acos(y0/220);

になります。

atan2()を用いる場合:
また、この関係をタンジェントで表せば、

tan(radX)=x0/sqrt(220*220-x0*x0)

となります。sqrt()は平方根(ルート)を求める関数です。
角度を求めるには、atan2()という関数を用いて、

radX=atan2(x0,sqrt(220*220-x0*x0));

とします。そうすると角度radXが求められます。

加速度センサのX軸プラス方向をProcessingの3D空間のX軸マイナス方向に対応させるために-radXに変換します。加速度センサのY軸方向を3D空間のZ軸方向に対応させて、

rotateX(-radX)
rotateZ(radY)

となります。
もし、加速度センサの回転方向と、3D立体の回転方向が逆になってしまうときは、値にマイナスを掛けます。また、90度ずれているときはPI/2を足します。実際にセンサを動かして、同じように3D立体が動くか確かめて下さい。

Processingのプログラム:

import processing.serial.*;
Serial port;

//読み取り値の変数
int x,y;

//X軸-1G時316、+1G時756であることから
//X軸のオフセット値
int x_offset=536;
//X軸の振り幅(-1G〜0G又は0G〜+1G)
int x_range=220;

//Y軸-1G時271、+1G時711であることから
//Y軸のオフセット値
int y_offset=496;
//Y軸の振り幅(-1G〜0G又は0G〜+1G)
int y_range=220;

//角度(ラジアン)の変数
float radX,radY;

void setup(){
//3D画面サイズ400×400
size(400,400,P3D);
//シリアルポート設定
port = new Serial(this,"/dev/tty.usbserial-A50019vD",9600);
//念のためバッファを空にする
port.clear();
//「10」(ラインフィード)が来る度にserialEvent()作動
port.bufferUntil(10);
//図形塗り面なし(ワイヤフレーム描画)
noFill();
}

void draw(){
//背景色を白
background(255);

//3D立体の座標を画面中央、-100奥に配置
translate(width/2,height/2,-100);

//オフセット調整(最小値-220、最大値220)
int x0=constrain(x-x_offset,-220,220);
int y0=constrain(y-y_offset,-220,220);

//角度の計算(ラジアン)
radX=asin(x0/x_range);//asin()で求める
radY=acos(y0/y_range);//acos()で求める
//radX=atan2( x0,sqrt(x_range*x_range-x0*x0) );//atan2()で求める場合
//radY=atan2( y0,sqrt(y_range*y_range-y0*y0) );

//センサX軸の角度は3D立体のX軸の角度に対応
//センサY軸の角度は3D立体のZ軸の角度に対応
//角度をそれぞれ代入
rotateX(-radX);
rotateZ(radY);

//直方体を描画
box(200,30,100);
}

//シリアル通信
void serialEvent(Serial p){
//文字列用変数を用意し、
//「10」(ラインフィード)が来るまで読み込む
String stringData=port.readStringUntil(10);

//データが空でないとき
if(stringData!=null){
//改行記号を取り除く
stringData=trim(stringData);
//コンマで区切ってデータを分解、整数化
int data[]=int(split(stringData,','));

//データ数が2個のとき
if(data.length==2){
//データの値を代入
x=data[0];
y=data[1];
//合図用データ送信
port.write(65);
}
}
}

//マウスボタンを押して通信開始
void mousePressed(){
//合図用データ送信
port.write(65);
}

void draw(){...}内の「オフセット調整」箇所の

int x0=constrain(x-x_offset,-220,220)

は、constrain()を用いて、読み取った値xからオフセット値であるx_offsetを差引き、最小値−220から最大値220までの値になるように制限しています。

ノイズのせいか、動きがぎこちない場合はフィルターのプログラムを挿入し滑らかにします。そのためには、radX、radYと同様にプログラムの冒頭でフィルター用の変数:
float filterX,filterY;

を用意しておき、void draw(){...}内の最後の角度を求める箇所を以下のように変更してください。
radX=asin(x0/x_range);//変更なし
radY=acos(y0/y_range);//変更なし

//フィルターの式
filterX+=(radX-filterX)*0.3;//新たに挿入
filterY+=(radY-filterY)*0.3;//新たに挿入

rotateX(-filterX);//変更
rotateZ(filterY); //変更

フィルターの式の「0.3」は係数であり、1.0に近づくほどフィルターの効果はなくなります。逆に0.1のように係数の値を小さくすれば、滑らかになりつつ反応が鈍く動くようになります。適度に調整してみてください。


尚、もっと簡単に加速度センサを扱いたい場合は(あまり正確な角度にこだわらないのであれば)、
//オフセット調整(最小値-220、最大値220)
int x0=constrain(x-x_offset,-220,220);
int y0=constrain(y-y_offset,-220,220);
//角度の計算(ラジアン)
radX=asin(x0/x_range);
radY=acos(y0/y_range);

の部分を、
radX=2.0*x*PI/1023;
radY=2.0*y*PI/1023;

に置き換えてもセンサを傾けた方向に3D立体が傾きます。この計算では、読み取った直接の値に比例して角度も変わります(比率が多少ずれてしまいます)。この場合は、モニタリングで調べた最小値/最大値/オフセット値などの設定もする必要はありません。式の中の「2.0」というのは係数であり、大きくすれば傾きも大きくなるので画面で確認しながら調整してください。

−90度や+90度付近では、出力値の変化が微妙になるので、きちんとした角度が出ない場合があります。出力値補正のためにZ軸の出力も利用すれば、計算は少し複雑になるかもしれませんが、±90付近まで計測可能になります。

7/28/2008

Processing サウンド3/テンポ

引き続きSoniaライブラリでの音の制御についてです。今回は曲や音源のスピード(テンポ)を変えてみたいと思います。Soniaでは、setRate()もしくはsetSpeed()で、容易に動的にテンポを変換できます。setRate()の場合は括弧内に0~88200までの値が入ります。その音源の基準のサンプルレートが44100であれば、22050を代入すると半分のスピードになり、88200で2倍のスピードになります。基準のサンプルレートを調べるにはgetRate()を用います。通常なら44100あたりに設定されていると思います。setSpeed()の場合は、0~2.0までの小数点が括弧内に入ります。0.5で半分のスピード、2.0で2倍のスピードになります。今回はsetSpeed()を用いて、マウスを上下(Y軸方向)にドラッグするとテンポが動的に変化するプログラムにします。

*音源データは、前回書いたようにスケッチフォルダ内にdataフォルダを作成し、その中に入れておいて下さい。
*プログラムをランさせた時に「Exception in thread "Thread-2" java.lang.OutOfMemoryError:...」のような赤文字のエラーが出たら、メモリーが足りないということなので、MacosXの場合はメニューバーのProcessing>環境設定を選択し(ウィンドウが現れる)、「Set maximum available memory to ... MB」の欄に256MBなど充分なメモリー(曲や音源のサイズ)を記入し、チェック欄にチェックを入れて下さい。Windowsの場合は、File>Preferencesを選択し、同様に充分なメモリー数を記入しチェックを入れて下さい。


//ライブラリを取り込む
import pitaru.sonia_v2_9.*;
//音源tune(名前は任意)を用意
Sample tune;

void setup() {
//とりあえず画面を200角に設定
size(200,200);
//Sonia開始
Sonia.start(this);
//括弧内に音源名を指定し設定する
tune = new Sample("music.wav");
//音源のサンプルレートを調べる
println(tune.getRate());
//音源の再生
tune.play();
}

void draw(){
//特になし
}

//マウスをドラッグしたとき
void mouseDragged(){
//マウスY座標値を0~2.0の範囲で割り当てる
float tempo=map(mouseY,0,height,0,2.0);
//テンポ(スピード)設定
tune.setSpeed(tempo);
}

//Soniaの使用停止
public void stop(){
Sonia.stop();
super.stop();
}


map()には、1つ目の値が元となるマウスY座標値を入れ、2つ目の値にはその最小値、3つ目がその最大値、4つ目は変換された後の最小値、5つ目が変換された後の最大値を入れます。変化する値をスケーリングしたりオフセットを設けたりして変換させるときに使うと便利です。setSpeed()は0~2.0の値が入るので、マウスY座標値を0~2.0の範囲で変換させるということになります。

関連:
Processing サウンド4/スクラッチ」--曲をスクラッチ演奏する
Processing サウンド2/逆再生」--逆再生の音源をつくる
Processing サウンド1/Sonia」--音源の再生/停止/ポーズする

*MacOSX(Intel)の場合、新たにJSynプラグインをインストールする必要があります。ここをクリックすると、インストール画面に移動します。移動先のページ上の「Click Here to Install JSyn Plugin」のボタンを押してインストールしてください。

 iTunes Music Store(Japan)

10/20/2008

Processing ライブラリのインストール先(v149以降)

現在Processingの最新バージョンは152になっており、いくつかの内容変更があります。特にProcessing 149以降では、ダウンロードしたライブラリをインストールする際(例えば、サウンドライブラリである「minim」など)、スケッチフォルダ内に「libraries」というフォルダを作成し、そのなかにダウンロードしたライブラリを入れるようになりました。
例えば、「minim」の場合なら、ダウンロードした「minim」というフォルダを、MacOSの場合、/Users/username/Documents/Processing/librariesの中に入れるということになります(「username」部分は各ユーザの名前のディレクトリです)。Macintosh HD>ユーザ>各ユーザ名>書類>Processing>libraries>minimという感じです。

追記:
バージョン155以降では、「libraries」フォルダがない場合には自動的に作成されるようになったようです。

11/01/2008

Processing HTTPサーバ/Webページ表示

今回は、ProcessingのNetworkライブラリを利用して、ウェブブラウザで閲覧可能なウェブサイトのサーバとして機能させます。
サーバとして、IPアドレスならびにポート番号をあらかじめ確認/設定しておきます。

LAN内のローカルIPアドレスの場合:
コンピュータのIPアドレスを調べるには、MacOSXであれば、「システム環境設定>ネットワーク」を開き、AirMacを使用している場合は「AirMac」を選択、ケーブル接続している場合は「内蔵Ethernet」を選択し、「TCP/IP」タグを選択すると2段目あたりに「IPアドレス:10.0.1.2」などと表示されています。Windowsの場合は、コマンドプロンプトを開いて、「ipconfig」と打ってリターンすれば、幾つかの情報が現れ「IP Address....10.0.1.2」などと表示されるはずです。

グローバルIPアドレスを調べる場合:
以下のようなサイトで調べることができます。
http://dog.tele.jp/lookup.php
「あなたのパソコンのグローバルIPアドレスは」と書かれている場所に表示されます。

尚、ローカルネットワークの外からアクセス可能にするためには、ルータ上でのポートマッピング(ポート転送)などの設定が必要になります。設定については、「Processing-Arduino ネットワーク制御」の後半に説明があるので参照してください。

参照:YahooBBのモデムのポート転送設定方法


Processingのプログラム:

//ライブラリのインポート
import processing.net.*;
//サーバのインスタンス
Server server;
//カウンタ用変数
int val = 0;

void setup() {
size(200, 200);
//サーバの設定(ポート:12345)
server = new Server(this, 12345);
}

void draw() {
//クライアントからの受信確認
Client client = server.available();

//クライアントがいる場合
if (client!=null) {
//クライアントIPアドレス出力
println("Client IP Address : "+client.ip());
//クライアントからのデータがあるとき
if(client.available()>0){
//データ読み込み(HTTPリクエスト読み込み)
String clientData=client.readString();

//データを改行コードをもとに区切り、
//改行コードを取り除いてから配列に代入していく
String[] httpRequest=trim(split(clientData,'\n'));

//受信データの最初の内容が「GET / HTTP/1.1」の場合
if(httpRequest[0].equals("GET / HTTP/1.1")){
//以下の内容をクライアントへ返信する(HTTPレスポンス)
client.write("HTTP/1.1 200 OK\n");//接続成立
client.write("Content-Type: text/html\n");//HTML文書形式
client.write("\n");//空白行

//以下HTML文書表示内容
client.write("<title>KOUSAKU SERVER</title>");//タイトルバー表示

client.write("THIS IS KOUSAKU WEB SITE");//表示テキスト
client.write("<br/>");//改行

client.write("YOUR IP ADDRESS: "+client.ip());//IPアドレス表示
client.write("<br/>");//改行

//リンク画像表示(インターネット上のリンク先)
client.write("<img src=\"http://3.bp.blogspot.com/_7uyXRm_coS4/SPRtCNVY1gI/AAAAAAAAATk/UR4Tl5ytviA/s400/network.png\">");
client.write("<br/>");//改行

//リンクページへ移動する
client.write("<a href=\"http://kousaku-kousaku.blogspot.com\">GO TO: KOUSAKU BLOG PAGE<a>");
client.write("<br/>");//改行

//カウンタ機能
val++;
client.write("COUNTER: "+val);//カウンタ表示
client.write("\n\n");//空白行
}
client.stop();//クライアントとの接続を停止
}
}
}


上記のサーバ用のプログラムを起動し、クライアント用コンピュータ上でブラウザ(IE、Safari、FireFoxなど)で指定したIPアドレスとポート番号を入力してアクセスしてください。
例えば、「192.168.3.3」がサーバのIPアドレスであれば、「http://192.168.3.3:12345」をブラウザ上で入力して下さい。

HTTPリクエスト、HTTPレスポンスについては、「Arduino Ethernet Shield」を参照してください。



独自ドメインが使えて基本使用料0円レンタルサーバー



7/24/2008

Processing サウンド2/逆再生

前回は音源を用意し再生/停止(ポーズ)のプログラムをしました。今回もまた「Sonia」ライブラリを使用しますが、用意した音源を逆再生するプログラムをしてみます。前回少し触れたように、音源データはフレームレートの数値で再生箇所や経過時間などを制御できます。時間の経過に合わせて、連続する音のデータを次々と読み込んで再生していく仕組みになっています。逆再生の場合は、配列を用意し音源データの最終フレームから先頭フレームまでを読み込んで、逆方向に配置されたデータをつくり、それを再生させます。

クリックで順再生と逆再生が切り替えられるプログラムを以下に書きます。音源は予め用意して、sketchフォルダ内のdataフォルダ(なければ新規作成)にいれておいて下さい。
尚、プログラムをランさせた時に「Exception in thread "Thread-2" java.lang.OutOfMemoryError:...」のような赤文字のエラーが出たら、メモリーが足りないということなので、MacosXの場合はメニューバーのProcessing>環境設定を選択し(ウィンドウが現れる)、「Set maximum available memory to ... MB」の欄に256MBなど充分なメモリー(曲や音源のサイズ)を記入し、チェック欄にチェックを入れて下さい。Windowsの場合は、File>Preferencesを選択し、同様に充分なメモリー数を記入しチェックを入れて下さい。


//ライブラリの取り込み
import pitaru.sonia_v2_9.*;

//順再生/逆再生の二つのオブジェクトを用意
Sample forwardTune;
Sample reverseTune;

//順再生/逆再生の切替フラグを用意
//trueで順再生、falseで逆再生
boolean direction=true;

void setup() {
size(200,200);

Sonia.start(this);

//使う音源を指定する
forwardTune = new Sample("music.wav");
//音源データの全体の長さ(フレーム数)を取得する
int dataLength=forwardTune.getNumFrames();

//順再生データ用の配列を全データの長さ分だけ用意
float[] forwardArray=new float[dataLength];
//順再生データを配列として読み込む
forwardTune.read(forwardArray);

//逆再生データ用の配列を全データの長さ分だけ用意
float[] backwardArray=new float[dataLength];
//順再生データを逆配列に置き換える
backwardArray=reverse(forwardArray);

//逆再生音源を用意
reverseTune= new Sample(dataLength);
//逆再生データを逆再生音源として書き出す
reverseTune.write(backwardArray);

//まず順再生音源を再生
forwardTune.play();
}

void draw(){
//特になし
}

void mousePressed(){
if(direction==false){
direction=true;
reverseTune.stop();//逆再生停止
forwardTune.play();//順再生
}else{
direction=false;
forwardTune.stop();//順再生停止
reverseTune.play();//逆再生
}
}

public void stop(){
Sonia.stop();
super.stop();
}


手順としては、用意した音源をSample()で指定し、全体のフレーム数(全データの長さ)をgetNumFrames()で数えます。データを変換するために順再生と逆再生の二つの配列を用意します。全体のフレーム数だけ配列のデータが必要になります。read()を用いて配列として全データを読み込みます。読み込んだ全データをreverse()で逆方向の配列に置き換えます。置き換えられた配列をwrite()で書き出し、逆再生の音源として取り込みます。今回は使いませんでしたが、getCurrentFrame()を用いて、反転する箇所のフレーム数を記憶させておけば、クリックするごとに行ったり来たりするような再生が可能になります。

関連:
Processing サウンド4/スクラッチ」--曲をスクラッチ演奏する
Processing サウンド3/テンポ」--音源再生のテンポ変換をする
Processing サウンド1/Sonia」--音源の再生/停止/ポーズする

*MacOSX(Intel)の場合、新たにJSynプラグインをインストールする必要があります。ここをクリックすると、インストール画面に移動します。移動先のページ上の「Click Here to Install JSyn Plugin」のボタンを押してインストールしてください。

 iTunes Music Store(Japan)

10/25/2008

Processing-Arduino ネットワーク制御

今回は、ProcessingのNetworkライブラリを使って、ネットワーク越しに複数のクライアントコンピュータから、サーバコンピュータに接続されたArduinoのサーボとLEDを操作することにします。ネットワーク上では、情報を提供する側となるサーバコンピュータに複数のクライアントコンピュータが接続されているような状態になります。



まず、上図のようにローカルネットワーク内での通信を行ってみます(後半にローカルネットワーク外からの通信サンプルを記載しておきました)。

ひとつのクライアントからサーバへ信号が送られると、サーボの角度やLEDの点灯状態が変化しますが、サーバはクライアントからの信号を受け取るだけではなく、現在のサーボの角度やLEDの状態(オン/オフ)についての情報も各クライアントへ送り返します。そうすることで、各クライアントは現在のサーボやLEDの状態を把握しながら制御することができます。
サーバコンピュータとクライアントコンピュータはインターネット越しに通信され、サーバコンピュータとArduinoはシリアル通信されます。


(Processingの画面:画面上半分がサーボ用スライダ、下半分がLED用ボタン)

Processingの画面には、上半分がサーボ用のスライダ、下半分にLED用のボタンを配置することにします。スライダは0~255の値を送信し、ボタンは押すとオン(緑)の状態になり、もう一度押すと白(オフ)に戻ります。あるクライアントがボタンを押せば、サーバとその他のクライアントのボタンの色も同時に変わります。サーバからのコントロールも可能です。

Arduinoでは、サーボの値とLEDの値をサーバコンピュータからシリアル通信を通してデータ受信します。以下のプログラムでは、サーボは3番ピンと接続しPWMで制御することにします(サーボ制御の方法については、「Arduino サーボ制御」を参照して下さい)。LEDは13番ピンに接続しデジタル出力でオン/オフ制御することにします。


Arduinoのプログラム:

//サーボ用変数を用意
int servoVal;
//LED用変数を用意
int ledVal;

void setup(){
//シリアル通信開始
Serial.begin(9600);
//13番ピンをデジタル出力に設定
pinMode(13,OUTPUT);
}

void loop(){
//データが二個きたら(1個より多ければ)
if(Serial.available()>1){
//サーボの回転値として読み込む(0~255)
servoVal=Serial.read();
//LEDの点灯状態(0:OFF,1:ON)
ledVal=Serial.read();
//合図用データ送信
Serial.print('A');
}
//3番ピン(PWM):アナログ出力(サーボ)
analogWrite(3,servoVal);
//13番ピン:デジタル出力(LED)
digitalWrite(13,ledVal);

//0.02秒周期にする
delay(20);
}



「サーバのプログラム」:
サーバ側のプログラムでは、ネットワークとシリアル通信の二つのライブラリが必要となります。スライダは横方向(X座標)に動かし256段階あるので、画面サイズの横幅も256ピクセルにしてあります。ドラッグのためのプログラムは、mouseDragged()を使わず、startDrag(名前は任意)というフラグを用意し、mousePressed()でマウスを押したときにフラグがtrueになり、ドラッグが開始されたことになり、mouseReleased()でマウスが放されたときにドラッグ終了になり、同時にフラグもfalseになるようにしておきます。つまりフラグstartDragによって、ドラッグしているかどうかを判別することになります。ドラッグしていなくてもマウスボタンを押し続けている限りドラッグ中と見なされるので、その間データを送信し続けます。
あまり高速での通信ができないためフレームレートを10にしています。環境に応じてフレームレートを調整してみて下さい(サーバとクライアントのプログラム両方)。
サーバとクライアントの間では、文字列で送受信しています。文字列に含まれるデータは:

サーボの値 + コンマ + LEDの値 + 改行コード

であり、たとえば

"155,1\n"

のような連続した文字列になります。サーボの値は0~255の数値、LEDの値は0か1になり、その間をコンマで区切り(デリミタ)、最後の部分に「\n」改行コードを付け加えて送信します。文字「\n」は、アスキーコード表で十進数の「10」に相当します。受信の際には、readStringUntil(10)を使うことで、改行コード「\n」つまり「10」までをひとまとまりのデータとして読み込み、その文字列データをtrim()で改行コードを取り除き、split()でコンマをもとに配列に分解し、int()で文字列の数値を整数化し、それぞれの値に代入します(文字列を分解して数値化する方法は「Arduino-Processing シリアル通信5」でも説明してあります)。
サーバのプログラムが開始したら、「s」キーを押してArduinoとのシリアル通信を開始します。

Processing サーバのプログラム:

//ネットワークライブラリの取り込み
import processing.net.*;
//シリアル通信ライブラリの取り込み
import processing.serial.*;

//サーバのインスタンス
Server server;
//クライアントのインスタンス
Client client;
//シリアル通信のインスタンス
Serial port;

//サーボの変数
int servoVal;
//LEDの変数
int ledVal;
//ドラッグ中かどうかのフラグ
boolean startDrag=false;

void setup(){
//画面サイズ
size(256,200);
//フレームレートを遅めに設定
frameRate(10);
//サーバの設定(ポート:12345)
server = new Server(this, 12345);
//シリアルポート設定
port=new Serial(this,"/dev/tty.usbserial-A4001Kjl",9600);
//矩形描画を中央配置に設定
rectMode(CENTER);
//外形線なし
noStroke();
}

void draw() {
//クライアントからのデータ受信
client = server.available();
//クライアント受信内容が空ではないとき
if (client != null) {
//文字列データの読み込み(改行コードまで)
String input=client.readStringUntil(10);
//文字列データの改行コードを取り除く
input=trim(input);
//文字列データを整数の配列に変換
int[] data = int(split(input, ','));
//配列の最初の値をサーボ変数に代入
servoVal=data[0];
//配列の次の値をLED変数に代入
ledVal=data[1];
}

//ドラッグ中
if(startDrag){
//サーボ変数にマウスX座標値を代入(最小値:0、最大値:255)
servoVal=constrain(mouseX,0,255);
//クライアント側へ送信(サーボの値、コンマ、LEDの値、改行コード)
server.write(servoVal+","+ledVal+"\n");
}

background(0);//背景(黒)

fill(80);//スライダ溝の塗色(グレー:80)
rect(width/2,50,width,50);//スライダ溝の矩形描画
fill(255);//スライダの塗色(白)
rect(servoVal,50,10,50);//スライダの矩形描画

//LEDボタンの色切替(0:オフ,1:オン)
if(ledVal==1){ //オンの場合
fill(0,255,0);//緑にする
}else{ //オフの場合
fill(255); //白にする
}
//LED用のボタン描画
rect(width/2,150,50,50);
}

//シリアル通信処理
void serialEvent(Serial p){
//合図用データが1個来た場合(0個より多い場合)
if(port.available()>0){
//合図用データを読込んバッファを空にする
port.read();
//サーボの値とLEDの値をシリアル通信で出力
port.write(servoVal);
port.write(ledVal);
}
}

//キーを押した場合
void keyPressed(){
//「s」キーの場合
if(key=='s'){
//シリアル通信開始用データ送信
port.write(servoVal);
port.write(ledVal);
}
}

//マウスボタンを押した場合
void mousePressed(){
//LED用のボタン矩形内にマウスがある場合
if(mouseX>width/2-25 && mouseX<width/2+25 && mouseY>125 && mouseY<175){
//LED点灯切替処理
if(ledVal==0){//オフの場合
ledVal=1; //オンにする
}else{ //オンの場合
ledVal=0; //オフにする
}
//クライアント側へ送信(サーボの値、コンマ、LEDの値、改行コード)
server.write(servoVal+","+ledVal+"\n");
}
//スライダ部分の場合
if(mouseY>25 && mouseY<75){
//ドラッグのフラグをtrueにする
startDrag=true;
}
}

//マウスを放した場合
void mouseReleased(){
//ドラッグのフラグをfalseにする
startDrag=false;
}




「Processing クライアント側のプログラム」:

//ネットワークライブラリを取り込む
import processing.net.*;
//クライアントのインスタンス
Client client;

//サーボ用変数を用意
int servoVal=127;
//LED用変数を用意
int ledVal=0;
//ドラッグ中かどうかのフラグ
boolean startDrag;

void setup() {
size(256, 200);
frameRate(10);
//サーバのIPアドレス、ポートの設定
//(「10.0.1.2」の部分は適宜変更)
client = new Client(this, "10.0.1.2", 12345);
rectMode(CENTER);
noStroke();
}

void draw(){
//サーバからのデータ受信
if (client.available() > 0) {
String input = client.readStringUntil(10);
input = trim(input);
int[] data = int(split(input, ','));
print(data);
servoVal=data[0];
ledVal=data[1];
}

//ドラッグ中の処理
if(startDrag){
servoVal=constrain(mouseX,0,255);
client.write(servoVal + "," +ledVal + "\n");
}

//描画処理
background(0);
fill(20);
rect(width/2,50,width,50);
fill(255);
rect(servoVal,50,10,50);
if(ledVal==1){
fill(0,255,0);
}else{
fill(255);
}
rect(width/2,150,50,50);
}


void mousePressed(){
if(mouseX>width/2-25 && mouseX<width/2+25 && mouseY>125 && mouseY<175){
if(ledVal==0){
ledVal=1;
}else{
ledVal=0;
}
//サーバへ送信(サーボの値、コンマ、LEDの値、改行コード)
client.write(servoVal + "," +ledVal + "\n");
}

if(mouseY>25 && mouseY<75){
startDrag=true;
}
}

void mouseReleased(){
startDrag=false;
}



クライアント側のプログラムでは、setup(){...}内でサーバのIPアドレスを指定する必要があります。上のプログラムでは「10.0.1.2」になっていますが、適宜変更してください。通常ローカルネットワークであれば「127.0.1.2」や「192.168.1.2」、あるいはルーターやAirMacなどを使っていれば、「10.0.1.2」などになっているかもしれません。サーバに設定したコンピュータのIPアドレスを調べるには、MacOSXであれば、「システム環境設定>ネットワーク」を開き、AirMacを使用している場合は「AirMac」を選択、ケーブル接続している場合は「内蔵Ethernet」を選択し、「TCP/IP」タグを選択すると2段目あたりに「IPアドレス:10.0.1.2」などと表示されています。Windowsの場合は、コマンドプロンプトを開いて、「ipconfig」と打ってリターンすれば、幾つかの情報が現れ「IP Address....10.0.1.2」などと表示されるはずです。



「外部からの接続方法」:
ルータを通してインターネットに接続している場合、ローカルネットワーク外から通信するには、ルータのポートマッピングやサーバコンピュータのファイヤーウォールの解除設定する必要がでてきます。
通常、インターネットプロバイダからグローバルIPアドレスがひとつ与えられています。各自のパソコンからグローバルIPアドレスを調べるには以下のようなサイトで調べることができます。
http://dog.tele.jp/lookup.php
「あなたのパソコンのグローバルIPアドレスは」と書かれている場所に表示されるはずです。
あるいは、
http://www.ugtop.com/spill.shtml
のサイトの「現在接続している場所(現IP)」の欄に同じアドレスが表示されるはずです。
このグローバルIPアドレスをメモしておきます。


「接続例」:
以下は、ローカルネットワーク内のひとつのコンピュータをサーバに設定し、ローカルネットワーク外から通信をするための接続例です。例えば、仕事場や学校のコンピュータから、自宅にあるサーバに設定したコンピュータにアクセスする方法です。



上画像では、ADSLモデム-ルータを使用してインターネットに接続しており、さらにそのADSLモデム-ルータにAirMacをケーブルで接続しています。そして複数あるコンピュータは、AirMacの無線通信でインターネットに接続しています。
このネットワークのグローバルIPアドレスは、先ほど調べた方法により「219.196.xxx.xxx」になっています(実際のアドレスに置き換えてください)。「モデム-ルータ」によって、グローバルIPアドレスがプライベートIPアドレスに変換され、複数のプライベートIPアドレスに分けられます(「192.168.xxx.xxx」のようなアドレス)。さらに、AirMacにおいてもルータ機能があるため、さらに細かなプライベートIPアドレスに分けられます(「10.0.1.xxx」のようなアドレス)。
ここでは、二つのルータによって二段階にIPアドレスが割り振られていますが、AirMacを「ブリッジモード」に切り替えることで、以下のようにAirMacのルータ機能を使わないネットワークに変更することができます。



「ブリッジモード」:
「ブリッジモード」は、コンピュータから「AirMacユーティリティ」を開いて変更することができます(ただし、変更できる権限が必要です)。「ブリッジモード」にすることで、AirMacはIPアドレス(「10.0.1.xxx」のようなアドレス)を割り振らなくなるので、元々の「モデム-ルータ」が割り振るアドレスを使うことにします(「192.168.xxx.xxx」のようなアドレス)。ただし、このままだと「モデム-ルータ」が自動的にプライベートIPアドレスをそれぞれのコンピュータに割り振ってしまうので、使用しないコンピュータなどがあるときは、プライベートIPアドレスが入れ替わってしまうことがあります。
そのため、サーバにしたいコンピュータには固定したIPアドレスを与えます。以下のように「コンピュータC」に固定のIPアドレス「192.168.3.10」を与えて、サーバとして機能させることにします。



「固定IPアドレスにする」:
各コンピュータ上のIPアドレス設定では、「DHCPサーバを参照」や「DHCPサーバを使用」というように、ルータから自動的にIPアドレスが割り振られる設定になっていることが多いと思います。MacOSXの場合、「システム環境設定>ネットワーク」へ行き、AirMac(あるいはEthernet:現在インターネットに接続している方法を選択)を選択し、「TCP/IP」の項目内で設定できます。サーバ用に使うコンピュータにおいては、このIPアドレス設定の部分を、「手入力」に変更し、指定したIPアドレスを使うように設定し直します。
Windows XPの場合は、「コントロールパネル>ネットワーク接続」で、使用しているネットワーク接続(「ワイヤレスネットワーク接続」など)のプロパティを右クリックで開き、「インターネットプロトコル(TCP/IP)」を選択しプロパティボタンを押し、「IPアドレスを自動的に取得する」に設定されている部分を「次のIPアドレスを使う」に切り替えて、以下の設定を入力していきます。

上図の場合は、ルータのIPアドレスが「192.168.3.1」になり、AirMacが「192.168.3.2」、以下に続く各コンピュータは「192.168.3.3」、「192.168.3.4」というように最後の数値がひとつずつ増えていきます。IPアドレスが重ならないように、固定するIPアドレスを「192.168.3.10」に設定しておきます(1~254まで可)。サブネットマスクは自動的に「255.255.255.0」になるはずです。ルータのIPアドレス(ゲートウェイ)は、「DHCPサーバを参照」の時と同じなので「192.168.3.1」を記入します。「DNS」あるいは「DNSサーバ」の項目については、先ほど調べたグローバルIPアドレスである「219.196.xxx.xxx」を記入します(グローバルIPアドレスは、実際に調べたアドレスを入れてください)。サーバ用のコンピュータの設定は以上です。


「ポートマッピング設定」:
もうひとつしなければならないことは、ポートマッピング(ポート転送/ポートフォワーディング)の設定です。回線に接続しているルータ自体の設定を変更する必要があります。通常コンピュータ上のブラウザからルータのアドレスにアクセスし操作するようになっています(各ルータのマニュアルを参照してください)。大抵の場合は、「詳細設定」のような項目に入っていると思います。
プロトコル、ポート、転送先のIPアドレス(先ほど固定したサーバ用のIPアドレス)を入力する必要があります。プロトコルは「TCP/UDP」を選択し、WAN側とLAN側のポートは同じものを入れておきますが、今回の場合Processingのコードでポートを「12345」に設定しておいたので、それを入力することにします(「12345」〜「12346」までというように範囲指定する入力にしておきます)。転送先IPアドレスは、固定した「192.168.3.10」を入力しておきます。ポートマッピングの設定は以上です。尚、ポートは、0~65535までの番号が入れられますが、0~1023までは使用目的が決められているので、あまりつかわない方がいいと思います。

ポートマッピングによって、ポート「12345」(あるいは「12346」)を通してローカルネットワーク外からグローバルIPアドレス「219.196.xxx.xxx」に送られた信号は、サーバ用コンピュータのプライベートIPアドレス「192.168.3.10」に転送されることになります。

Processingのクライアント用のプログラム内の、

client = new Client(this, "219.196.xxx.xxx", 12345);

IPアドレス部分をグローバルIPアドレス「219.196.xxx.xxx」(実際に調べたアドレスを入れてください)に書き換えればローカルネットワーク外から通信できるようになります。

参照:YahooBBのモデムのポート転送設定方法


「外部から通信できない場合」:
ファイヤーウォールによって、外部からの通信をブロックしている場合があるので、ファイヤーウォール設定を解除して通信してみてください。ただし、セキュリティ上危険になるので注意してください。

尚、同じローカルネットワーク内にある別のコンピュータからは通信できないので(例えば上図の「コンピュータA」とサーバの「コンピュータC」との通信はできない)、異なるグローバルIPアドレス(外部)から通信してください。「コンピュータA」と「コンピュータC」を通信させる場合は、前半で説明したローカルネットワーク内での通信方法を利用してください。



5/14/2008

Processing 文字と画像

文字の表示についてはPFontというクラスを用います。文字を使う場合、Processingを開いたあと、メニューバーにあるTools>Create Font...をクリックします。そうするとCreate Fontという別のウィンドウが現れ、使用したいフォントとそのサイズ選択します。視覚的に滑らかなフォントを使いたいのであればSmoothにチェックを入れます。基本的な記号、数字、アルファベットを使うのであればAll Charactersのチェックを外したままで大丈夫です。
日本語などを使う場合はチェックを入れて使いますがデータはその分大きくなります。All Charactersにチェックを入れると、全てのフォントデータを取り込むためにやや時間がかかるときがあります。日本語の大きなサイズのフォントを取り込む際にエラーが出る場合は、上記の方法のかわりにcreateFont()をつかった方法を用いてみてください(サンプルは以下にあります)。
ここでは、Monacoというフォント、サイズは12、Smoothにチェックを入れることにします。Filename欄にはMonaco-12が表示され、その拡張子.vlwがあることが確認できます。OKボタンを押してウィンドウを閉じると指定したフォントの準備が整います。現在開いているsketchファイル(例えば「sketch_08513a」という名前)を一旦保存(File>save)すると、Macintoshであれば、/User/username/Documents/Processing/sketch_08513a/data内にフォントのファイル(例えばMonaco-12.vlw) が入ってます。WindowsならC:¥Documents and Setting¥username¥My Documents¥Processing¥sketch_08513a¥data内に入っています。文字を使用する場合、必要なフォントがsketchフォルダ内のdataフォルダに入っていないとエラーがでます。同様に、jpegなどの画像や音源などを使用する際も、dataフォルダに入れておく必要があります。
以下では、クリックによって文字が切り替わるプログラムをします。一文字ごとの変数にはchar、そして単語などの連なった文字(文字列)にはString型の変数を用います。尚、文字列は「"文字"」のようにダブルクオーテーションマークで文字列の両端を括ります。一文字だけのcharなら「'A'」のようにシングルクオーテーションマークで括ります。

PFont font; //フォントの使用
String tx; //文字列の変数を用意

void setup(){
size(400,200);
//指定フォントのロード
font = loadFont("Monaco-12.vlw");
//フォントを使用開始、サイズ:12
textFont(font,12);
//初期の表示文字を"CLICK"に設定
tx="CLICK";
}

void draw(){
text(tx,200,100);
}

void mousePressed(){
tx="HELLO";
}
void mouseReleased(){
tx="CLICK";
}

日本語フォントを使う場合は、createFont()を使用します。その際「Tools>Create Font...」でフォントを選択する必要はありません。

PFont myFont;

void setup() {
size(400, 200);
myFont = createFont("Osaka", 32);
textFont(myFont);
}

void draw(){
background(0);
text("建築発明工作ゼミ", 10, height/2);
}

画像の取り込みについては、PImageというクラスを使います。Processingでは、gif、jpeg、tga、pngの画像フォーマットに対応しています。予め用意した画像をdataフォルダ(前述)に入れておく必要があります(dataフォルダがない場合は、sketchフォルダ内に「data」という名前をつけてフォルダを作成しておきます)。
以下のサンプルでは画像を二種類(start.jpgとstop.jpg)用意し、最初に画像Aが表示されており、マウスボタンを押したら画像Bに切り替わり、放したら画像Aに戻るというプログラムをします。切り替えには前回用いたflagというboolean型の変数を用いて、現在画像Aが表示されているか画像Bが表示されているか記憶させておきます。

PImage imgA;//画像A用にimgAを用意
PImage imgB;//画像B用にimgBを用意
boolean flag;//切り替えのフラグを用意

void setup(){
size(400,200);
//imgAには"start.jpg"という画像をロード
imgA=loadImage("start.jpg");
//imgBには"stop.jpg"という画像をロード
imgB=loadImage("stop.jpg");
//最初にimgAを100,50の位置に表示しておく
image(imgA,100,50);
//フラグはfalse(imgA表示)に設定
flag=false;
}

void draw(){
background(0);
if(flag==false){//falseの場合imgA表示
image(imgA,100,50);
}else{//それ以外(true)の場合imgB表示
image(imgB,100,50);
}
}
void mousePressed(){
//押すとtrue(imgB表示)
flag=true;
}
void mouseReleased(){
//放すとfalse(imgA表示)
flag=false;
}


[目次:Processing関係]  [HOMEへ戻る]  [目次:Arduino関係]